Sequences:

Definition: A **sequence** is a function whose domain is the set of natural numbers or a subset of the natural numbers. We usually use the symbol a_n to represent a sequence, where n is a natural number and a_n is the value of the function on n.

A sequence may be **finite** or **infinite**.

If a sequence is finite, we sometimes write $\{a_1, a_2, a_3, a_4, \ldots, a_n\}$ to represent the sequence, If a sequence is infinite, we write $\{a_1, a_2, a_3, \ldots\}$ or $\{a_i\}_{i=1}^{\infty}$.

The notation $\{a_i\}$ implies that we have a sequence whose first term is a_1 , the second term is a_2 , the third term is a_3 ...etc. The **index** *i* starts from 1 (or any other positive integer) and increases by 1 each time to represent each subsequent term in the sequence.

Intuitively, a sequence is just an ordered list of (possibly infinitely many) numbers. Each number in a sequence is a **term** of the sequence. We usually use the letter i as the **index**, and a_i is the **i-th term** of the sequence.

A sequence can be represented by a formula expressed as an expression in i or in n. If a sequence has a pattern we can also write the first few terms of the sequence and assume that the pattern continues and let the reader figure out the values of the subsequent values A sequence can also be defined **recursively**, where value of each subsequence is defined by one or more of the previous terms. We can also describe a sequence verbally if there's no obvious formula or pattern that we can use to express the sequence.

Example: Consider the sequence $\{a_i = -6\}_{i=1}^{\infty}$. Starting with i = 1, since $a_i = -6$, so $a_1 = -6$ is the first term of the sequence. If i = 2, then $a_2 = -6$. If i = 3, then $a_3 = -6$. The value of a_i is always the same value, so we have the sequence of constant terms: $\{a_i = -6\}_{i=1}^{\infty} = \{-6, -6, -6, -6, \dots\}$

Example: Consider the sequence $\{a_i = i\}_{i=1}^{\infty}$. Starting with i = 1, since $a_i = i$, so $a_1 = 1$ is the first term of the sequence. If i = 2, then $a_2 = 2$. If i = 3, then $a_3 = 3$. Continue in this fashion, we obtain the sequence of positive integers: $\{a_i\}_{i=1}^{\infty} = \{1, 2, 3, 4, ...\}$

Example: Consider the sequence $\{a_i = i^2 - 3\}_{i=1}^{\infty}$. Starting with i = 1, since $a_i = i^2 - 3$, so $a_1 = 1^2 - 3 = -2$ is the first term of the sequence. If i = 2, then $a_2 = 2^2 - 3 = 1$ is the second term. If i = 3, then $a_3 = 3^2 - 3 = 6$ is the third term. If i = 4, then

 $a_4 = 4^2 - 3 = 13$ is the fourth term. Continue in this fashion, we obtain the following sequence: $\{a_i\}_{i=1}^{\infty} = \{-2, 1, 6, 13, 22, 33, 46, \dots\}$

Example: Consider the sequence $\left\{a_i = \frac{i}{i+1}\right\}_{i=1}^{\infty}$. Starting with i = 1, since $a_i = \frac{i}{i+1}$, so $a_1 = \frac{1}{1+1} = \frac{1}{2}$ is the first term of the sequence. If i = 2, then $a_2 = \frac{2}{2+1} = \frac{2}{3}$ is the second term. If i = 3, then $a_3 = \frac{3}{3+1} = \frac{3}{4}$ is the third term. If i = 4, then $a_4 = \frac{4}{4+1} = \frac{4}{5}$ is the fourth term. Continue in this fashion, we obtain the following sequence: $\{a_i\}_{i=1}^{\infty} = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots\right\}$

Example: Consider the sequence: $\{2, 4, 6, 8, ...\}$. Assuming the pattern continues, this is the sequence of positive even integers. We can also represent this sequence using a formula: $\{a_i = 2i\}_{i=1}^{\infty}$ or $\{2i\}_{i=1}^{\infty}$

Example: $\left\{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, -\frac{1}{6} \dots\right\}$ Assuming the pattern continues, this is a sequence whose terms alternate in sign. It can be expressed by $a_i = \frac{(-1)^{i+1}}{i}$

Example: Consider the sequence defined by: $a_i =$ the i-th prime number.

This is the sequence $\{2, 3, 5, 7, 11, ...\}$. This sequence cannot be expressed as an expression in *i*, but is well-defined.

Example: The sequence $\{1, 1, 1, ...\}$ is a sequence defined by $a_i = 1$.

Example: The sequence $\{i^3\}_{i=1}^{\infty}$ is the sequence of positive perfect cubes,

 $\{a_i\} = \{1, 8, 27, 64, 125, \dots\}$ Example: The sequence $\frac{1}{i^2 + 1}$ is the sequence: $\left\{\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \frac{1}{17}, \dots\right\}$ Example: Find an expression in *i* for the sequence $\left\{\frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \frac{4}{25}, \dots\right\}$

Ans: For each fraction, the denominator is the square of a number one greater than the numerator, so we may use: $a_i = \frac{i}{(i+1)^2}$

Notice that we may also use: $\left\{a_i = \frac{i-1}{i^2}\right\}_{i=2}^{\infty}$. For any sequence, *i* does not have to start at 1.

Example: Find an expression in *i* for the sequence $\left\{2, -\frac{3}{2}, \frac{4}{3}, -\frac{5}{4}, \frac{6}{5}, \dots\right\}$

Ans: This is a sequence where the denominator is one less than the numerator. To make the terms alternate in sign, we use a power of -1:

$$a_i = (-1)^{i+1} \left(\frac{i+1}{i}\right), \ i \ge 1$$

Sigma Notation

Suppose we have a sequence $\{a_i\} = \{a_1, a_2, a_3, \dots\}$, often times we want to add some or all of the terms of the sequence to find the sum. Instead of writing $a_1 + a_2 + a_3 + \dots + a_i + \dots$ every time, we use the **sigma notation**, Σ , to represent the sum of all these terms:

Definition:
$$\sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n$$

Example: Consider: $\sum_{i=1}^{\circ} i$. This means that $a_i = i$, we start with i = 1, so $a_1 = 1$, then increases i by 1 each time until we get to 8, we have:

$$\sum_{i=1}^{8} i = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36.$$

Example: Consider: $\sum_{i=1}^{11} i^2$. This means that $a_i = i^2$, we start with i = 1, so $a_1 = 1^2 = 1$, then increases i by 1, we get $a_2 = 2^2 = 4$, then increases i by 1 again, so $a_3 = 3^3 = 9$. Continue in this pattern until i = 11, we have:

$$\sum_{i=1}^{11} i^2 = 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100 + 121 = 506$$

Example: Consider: $\sum_{i=5}^{12} (2i+1)$. This means that $a_i = (2i+1)$, but this time to get the sum, we start with i = 5, so $a_5 = 2(5) + 1 = 11$, then increasment i by 1, we have $a_6 = 2(6) + 1 = 13$. Continue in this fashion until i = 12, we have: $\sum_{i=5}^{12} (2i+1) = 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 = 144$

Example: Consider: $\sum_{i=1}^{9} 4$. This means that $a_i = 4$ for all *i*. In other words, $a_1 = 4$,

$$a_2 = 4$$
,...etc., so $\sum_{i=1}^{9} 4 = 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 = 36$

Some formula involving sigma that would be useful to know:

If c is a constant,

 $\sum_{i=1}^{n} c = nc \text{ (we are adding the same constant, } c, \text{ for } n \text{ many times, the result is } n \text{ times } c)$ $\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i \text{ (this is just the distributive property)}$ $\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \text{ (communtative property of addition)}$ $\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i$ $\sum_{i=1}^{n} i = \frac{(n)(n+1)}{2}$ $\sum_{i=1}^{n} i^2 = \frac{(n)(n+1)(2n+1)}{6}$ $\sum_{i=1}^{n} i^3 = \left[\frac{(n)(n+1)}{2}\right]^2$