Sequences:

Definition: A sequence is a function whose domain is the set of natural numbers or a subset of the natural numbers. We usually use the symbol a_{n} to represent a sequence, where n is a natural number and a_{n} is the value of the function on n.

A sequence may be finite or infinite.
If a sequence is finite, we sometimes write $\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots a_{n}\right\}$ to represent the sequence, If a sequence is infinite, we write $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ or $\left\{a_{i}\right\}_{i=1}^{\infty}$.

The notation $\left\{a_{i}\right\}$ implies that we have a sequence whose first term is a_{1}, the second term is a_{2}, the third term is $a_{3} \ldots$ etc. The index i starts from 1 (or any other positive integer) and increases by 1 each time to represent each subsequent term in the sequence.

Intuitively, a sequence is just an ordered list of (possibly infinitely many) numbers. Each number in a sequence is a term of the sequence. We usually use the letter i as the index, and a_{i} is the \mathbf{i}-th term of the sequence.

A sequence can be represented by a formula expressed as an expression in i or in n. If a sequence has a pattern we can also write the first few terms of the sequence and assume that the pattern continues and let the reader figure out the values of the subsequent values A sequence can also be defined recursively, where value of each subsequence is defined by one or more of the previous terms. We can also describe a sequence verbally if there's no obvious formula or pattern that we can use to express the sequence.

Example: Consider the sequence $\left\{a_{i}=-6\right\}_{i=1}^{\infty}$. Starting with $i=1$, since $a_{i}=-6$, so $a_{1}=-6$ is the first term of the sequence. If $i=2$, then $a_{2}=-6$. If $i=3$, then $a_{3}=-6$. The value of a_{i} is always the same value, so we have the sequence of constant terms: $\left\{a_{i}=-6\right\}_{i=1}^{\infty}=\{-6,-6,-6,-6, \ldots\}$

Example: Consider the sequence $\left\{a_{i}=i\right\}_{i=1}^{\infty}$. Starting with $i=1$, since $a_{i}=i$, so $a_{1}=1$ is the first term of the sequence. If $i=2$, then $a_{2}=2$. If $i=3$, then $a_{3}=3$. Continue in this fashion, we obtain the sequence of positive integers: $\left\{a_{i}\right\}_{i=1}^{\infty}=\{1,2,3,4, \ldots\}$

Example: Consider the sequence $\left\{a_{i}=i^{2}-3\right\}_{i=1}^{\infty}$. Starting with $i=1$, since $a_{i}=i^{2}-3$, so $a_{1}=1^{2}-3=-2$ is the first term of the sequence. If $i=2$, then $a_{2}=2^{2}-3=1$ is the second term. If $i=3$, then $a_{3}=3^{2}-3=6$ is the third term. If $i=4$, then
$a_{4}=4^{2}-3=13$ is the fourth term. Continue in this fashion, we obtain the following sequence: $\left\{a_{i}\right\}_{i=1}^{\infty}=\{-2,1,6,13,22,33,46, \ldots\}$

Example: Consider the sequence $\left\{a_{i}=\frac{i}{i+1}\right\}_{i=1}^{\infty}$. Starting with $i=1$, since $a_{i}=\frac{i}{i+1}$, so $a_{1}=\frac{1}{1+1}=\frac{1}{2}$ is the first term of the sequence. If $i=2$, then $a_{2}=\frac{2}{2+1}=\frac{2}{3}$ is the second term. If $i=3$, then $a_{3}=\frac{3}{3+1}=\frac{3}{4}$ is the third term. If $i=4$, then $a_{4}=\frac{4}{4+1}=\frac{4}{5}$ is the fourth term. Continue in this fashion, we obtain the following sequence: $\left\{a_{i}\right\}_{i=1}^{\infty}=\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots\right\}$
Example: Consider the sequence: $\{2,4,6,8, \ldots\}$. Assuming the pattern continues, this is the sequence of positive even integers. We can also represent this sequence using a formula: $\left\{a_{i}=2 i\right\}_{i=1}^{\infty}$ or $\{2 i\}_{i=1}^{\infty}$
Example: $\left\{1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5},-\frac{1}{6} \ldots\right\}$ Assuming the pattern continues, this is a sequence whose terms alternate in sign. It can be expressed by $a_{i}=\frac{(-1)^{i+1}}{i}$

Example: Consider the sequence defined by: $a_{i}=$ the i-th prime number.
This is the sequence $\{2,3,5,7,11, \ldots\}$. This sequence cannot be expressed as an expression in i, but is well-defined.

Example: The sequence $\{1,1,1, \ldots\}$ is a sequence defined by $a_{i}=1$.
Example: The sequence $\left\{i^{3}\right\}_{i=1}^{\infty}$ is the sequence of positive perfect cubes, $\left\{a_{i}\right\}=\{1,8,27,64,125, \ldots\}$
Example: The sequence $\frac{1}{i^{2}+1}$ is the sequence: $\left\{\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \frac{1}{17} \ldots\right\}$
Example: Find an expression in i for the sequence $\left\{\frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \frac{4}{25}, \ldots\right\}$
Ans: For each fraction, the denominator is the square of a number one greater than the numerator, so we may use: $a_{i}=\frac{i}{(i+1)^{2}}$
Notice that we may also use: $\left\{a_{i}=\frac{i-1}{i^{2}}\right\}_{i=2}^{\infty}$. For any sequence, i does not have to start at 1 .

Example: Find an expression in i for the sequence $\left\{2,-\frac{3}{2}, \frac{4}{3},-\frac{5}{4}, \frac{6}{5}, \ldots\right\}$
Ans: This is a sequence where the denominator is one less than the numerator. To make the terms alternate in sign, we use a power of -1 :
$a_{i}=(-1)^{i+1}\left(\frac{i+1}{i}\right), i \geq 1$

Sigma Notation

Suppose we have a sequence $\left\{a_{i}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, often times we want to add some or all of the terms of the sequence to find the sum. Instead of writing $a_{1}+a_{2}+a_{3}+\cdots+a_{i}+\cdots$ every time, we use the sigma notation, Σ, to represent the sum of all these terms:

Definition: $\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n-1}+a_{n}$
Example: Consider: $\sum_{i=1}^{8} i$. This means that $a_{i}=i$, we start with $i=1$, so $a_{1}=1$, then increases i by 1 each time until we get to 8 , we have:
$\sum_{i=1}^{8} i=1+2+3+4+5+6+7+8=36$.
Example: Consider: $\sum_{i=1}^{11} i^{2}$. This means that $a_{i}=i^{2}$, we start with $i=1$, so $a_{1}=1^{2}=1$, then increases i by 1 , we get $a_{2}=2^{2}=4$, then increases i by 1 again, so $a_{3}=3^{3}=9$. Continue in this pattern until $i=11$, we have:
$\sum_{i=1}^{11} i^{2}=1+4+9+16+25+36+49+64+81+100+121=506$
Example: Consider: $\sum_{i=5}^{12}(2 i+1)$. This means that $a_{i}=(2 i+1)$, but this time to get the sum, we start with $i=5$, so $a_{5}=2(5)+1=11$, then increasment i by 1 , we have $a_{6}=2(6)+1=13$. Continue in this fashion until $i=12$, we have:
$\sum_{i=5}^{12}(2 i+1)=11+13+15+17+19+21+23+25=144$
Example: Consider: $\sum_{i=1}^{9} 4$. This means that $a_{i}=4$ for all i. In other words, $a_{1}=4$,
$a_{2}=4, \ldots$ etc., so $\sum_{i=1}^{9} 4=4+4+4+4+4+4+4+4+4=36$
Some formula involving sigma that would be useful to know:
If c is a constant,
$\sum_{i=1}^{n} c=n c$ (we are adding the same constant, c, for n many times, the result is n times c)
$\sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}$ (this is just the distributive property)
$\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}($ communtative property of addition)
$\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} b_{i}$
$\sum_{i=1}^{n} i=\frac{(n)(n+1)}{2}$
$\sum_{i=1}^{n} i^{2}=\frac{(n)(n+1)(2 n+1)}{6}$
$\sum_{i=1}^{n} i^{3}=\left[\frac{(n)(n+1)}{2}\right]^{2}$

