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Chapter 6: Periodic Functions 
In the previous chapter, the trigonometric functions were introduced as ratios of sides of a 

right triangle, and related to points on a circle.  We noticed how the x and y values of the 

points did not change with repeated revolutions around the circle by finding coterminal 

angles. In this chapter, we will take a closer look at the important characteristics and 

applications of these types of functions, and begin solving equations involving them. 
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Section 6.1 Sinusoidal Graphs 

The London Eye1 is a huge Ferris wheel with diameter 

135 meters (443 feet) in London, England, which 

completes one rotation every 30 minutes.  When we 

look at the behavior of this Ferris wheel it is clear that it 

completes 1 cycle, or 1 revolution, and then repeats this 

revolution over and over again.   

 

This is an example of a periodic function, because the 

Ferris wheel repeats its revolution or one cycle every 30 

minutes, and so we say it has a period of 30 minutes. 

 

In this section, we will work to sketch a graph of a 

rider’s height above the ground over time and express 

this height as a function of time.   

 

 

Periodic Functions 

A periodic function is a function for which a specific horizontal shift, P, results in the 

original function: )()( xfPxf   for all values of x.   When this occurs we call the 

smallest such horizontal shift with P > 0 the period of the function.  

 

 

You might immediately guess that there is a connection here to finding points on a circle, 

since the height above ground would correspond to the y value of a point on the circle. 

We can determine the y value by using the sine function.  To get a better sense of this 

function’s behavior, we can create a table of values we know, and use them to sketch a 

graph of the sine and cosine functions.  

 

 

                                                 
1 London Eye photo by authors, 2010, CC-BY 
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Listing some of the values for sine and cosine on a unit circle, 
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Here you can see how for each angle, we use the y value of the point on the circle to 

determine the output value of the sine function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plotting more points gives the full shape of the sine and cosine functions. 

 

 
 

Notice how the sine values are positive between 0 and π, which correspond to the values 

of sine in quadrants 1 and 2 on the unit circle, and the sine values are negative between π 

and 2π, corresponding to quadrants 3 and 4. 
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Like the sine function we can track the value of the cosine function through the 4 

quadrants of the unit circle as we place it on a graph. 

 

Both of these functions are defined for all real numbers, since we can evaluate the sine 

and cosine of any angle.  By thinking of sine and cosine as coordinates of points on a unit 

circle, it becomes clear that the range of both functions must be the interval ]1,1[ . 

 

 

Domain and Range of Sine and Cosine 

The domain of sine and cosine is all real numbers, ( , )  . 

The range of sine and cosine is the interval [-1, 1]. 

 

 

Both these graphs are called sinusoidal graphs. 

 

In both graphs, the shape of the graph begins repeating after 2π.  Indeed, since any 

coterminal angles will have the same sine and cosine values, we could conclude that 

)sin()2sin(    and )cos()2cos(   . 

 

In other words, if you were to shift either graph horizontally by 2π, the resulting shape 

would be identical to the original function.  Sinusoidal functions are a specific type of 

periodic function. 

 

 

Period of Sine and Cosine 

The periods of the sine and cosine functions are both 2π. 

 

 

Looking at these functions on a domain centered at the vertical axis helps reveal 

symmetries. 

 

 

 

 

 

θ 

g(θ) = cos(θ) 
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sine      cosine 

          
 

The sine function is symmetric about the origin, the same symmetry the cubic function 

has, making it an odd function. The cosine function is clearly symmetric about the y axis, 

the same symmetry as the quadratic function, making it an even function. 

 

 

Negative Angle Identities 

The sine is an odd function, symmetric about the origin, so )sin()sin(   . 

The cosine is an even function, symmetric about the y-axis, so )cos()cos(   . 

 

 

These identities can be used, among other purposes, for helping with simplification and 

proving identities. 

You may recall the cofunction identity from last chapter; 







 




2
cos)sin( .  

Graphically, this tells us that the sine and cosine graphs are horizontal transformations of 

each other.  We can prove this by using the cofunction identity and the negative angle 

identity for cosine. 
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Now we can clearly see that if we horizontally shift the cosine function to the right by π/2 

we get the sine function. 

 

Remember this shift is not representing the period of the function.  It only shows that the 

cosine and sine function are transformations of each other. 

 

 

Example 1 

Simplify 
)tan(

)sin(




. 

 

)tan(

)sin(




  Using the even/odd identity 

)tan(

)sin(




  Rewriting the tangent 
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)cos(
)sin(

)sin(





 Inverting and multiplying 

)sin(

)cos(
)sin(




   Simplifying we get 

)cos(  

 

 

Transforming Sine and Cosine 
 

Example 2 

A point rotates around a circle of radius 3.  

Sketch a graph of the y coordinate of the 

point. 

 

Recall that for a point on a circle of radius r, 

the y coordinate of the point is )sin(ry  , 

so in this case, we get  the 

equation )sin(3)(  y .   

 

The constant 3 causes a vertical stretch of the y values of the function by a factor of 3.   

 

Notice that the period of the function does not change. 

 

 

Since the outputs of the graph will now oscillate between -3 and 3, we say that the 

amplitude of the sine wave is 3. 

 

 

Try it Now 

1. What is the amplitude of the function )cos(7)(  f ?  Sketch a graph of this 

function. 

 

 

Example 3 

A circle with radius 3 feet is mounted with its center 4 

feet off the ground.  The point closest to the ground is 

labeled P.  Sketch a graph of the height above ground of 

the point P as the circle is rotated, then find a function 

that gives the height in terms of the angle of rotation. 

 

 

 

 

3 ft 

4 ft 

P 
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Sketching the height, we note that it will 

start 1 foot above the ground, then increase 

up to 7 feet above the ground, and continue 

to oscillate 3 feet above and below the 

center value of 4 feet. 

 

Although we could use a transformation of 

either the sine or cosine function, we start by 

looking for characteristics that would make 

one function easier to use than the other.  

 

We decide to use a cosine function because it starts at the highest or lowest value, while 

a sine function starts at the middle value.  A standard cosine starts at the highest value, 

and this graph starts at the lowest value, so we need to incorporate a vertical reflection.   

 

Second, we see that the graph oscillates 3 above and below the center, while a basic 

cosine has an amplitude of one, so this graph has been vertically stretched by 3, as in 

the last example. 

 

Finally, to move the center of the circle up to a height of 4, the graph has been vertically 

shifted up by 4.  Putting these transformations together, 

 

4)cos(3)(  h  

 

 

Midline 

The center value of a sinusoidal function, the value that the function oscillates above 

and below, is called the midline of the function, corresponding to a vertical shift. 

 

The function kf  )cos()(   has midline at y = k. 

 

 

Try it Now 

2. What is the midline of the function 4)cos(3)(  f ?  Sketch a graph of the 

function. 

 

 

To answer the Ferris wheel problem at the beginning of the section, we need to be able to 

express our sine and cosine functions at inputs of time.  To do so, we will utilize 

composition.  Since the sine function takes an input of an angle, we will look for a 

function that takes time as an input and outputs an angle.  If we can find a suitable 

)(t function, then we can compose this with our )cos()(  f  function to obtain a 

sinusoidal function of time: ))(cos()( ttf  . 
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Example 4 

A point completes 1 revolution every 2 minutes around a circle of radius 5.  Find the x 

coordinate of the point as a function of time, if it starts at (5, 0). 

 

Normally, we would express the x coordinate of a point on a unit circle 

using )cos(rx  , here we write the function )cos(5)(  x . 

 

The rotation rate of 1 revolution every 2 minutes is an angular velocity.  We can use this 

rate to find a formula for the angle as a function of time.  The point begins at an angle 

of 0.  Since the point rotates 1 revolution 

= 2π radians every 2 minutes, it rotates π 

radians every minute.  After t minutes, it 

will have rotated: 

tt  )(  radians 

 

Composing this with the cosine function, 

we obtain a function of time. 

)cos(5))(cos(5)( tttx    

 

 

 

Notice that this composition has the effect of a horizontal compression, changing the 

period of the function. 

 

To see how the period relates to the stretch or compression coefficient B in the equation 

 Bttf sin)(  , note that the period will be the time it takes to complete one full 

revolution of a circle.  If a point takes P minutes to complete 1 revolution, then the 

angular velocity is 
minutes

radians2

P


.  Then t

P
t




2
)(  .  Composing with a sine function, 









 t

P
ttf




2
sin))(sin()(  

 

From this, we can determine the relationship between the coefficient B and the period:  

P
B

2
 .  Notice that the stretch or compression coefficient B is a ratio of the “normal 

period of a sinusoidal function” to the “new period.”   If we know the stretch or 

compression coefficient B, we can solve for the “new period”: 
B

P
2

 .   

 

 

 

 

 

 

θ 

x(θ) 
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Example 5 

What is the period of the function 







 ttf

6
sin)(


? 

 

Using the relationship above, the stretch/compression factor is 
6


B , so the period 

will be 12
6

2

6

22









B
P . 

 

 

While it is common to compose sine or cosine with functions involving time, the 

composition can be done so that the input represents any reasonable quantity. 

 

 

Example 6 

A bicycle wheel with radius 14 inches has the bottom-most point on the wheel marked 

in red.  The wheel then begins rolling down the street.  Write a formula for the height 

above ground of the red point after the bicycle has travelled x inches. 

 

The height of the point begins at the lowest value, 0, 

increases to the highest value of 28 inches, and 

continues to oscillate above and below a center height 

of 14 inches.  In terms of the angle of rotation, θ: 

14)cos(14)(  h  

 

In this case, x is representing a linear distance the 

wheel has travelled, corresponding to an arclength 

along the circle.  Since arclength and angle can be 

related by rs  , in this case we can write 14x , 

which allows us to express the angle in terms of x:  

14
)(

x
x   

 

Composing this with our cosine-based function from above, 

14
14

1
cos1414

14
cos14))(()( 

















 x

x
xhxh   

 

The period of this function would be 


28142

14

1

22


B
P , the circumference 

of the circle.  This makes sense – the wheel completes one full revolution after the 

bicycle has travelled a distance equivalent to the circumference of the wheel. 

 

θ 

Starting 

Rotated by θ 

14in 

x 
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Summarizing our transformations so far: 

 

 

Transformations of Sine and Cosine 

Given an equation in the form   kBtAtf  sin)(  or   kBtAtf  cos)(  

A is the vertical stretch, and is the amplitude of the function.  

B is the horizontal stretch/compression, and is related to the period, P, by 
B

P
2

 . 

k is the vertical shift and determines the midline of the function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 7 

Determine the midline, amplitude, and period of the function   12sin3)(  ttf . 

 

The amplitude is 3 

The period is 



2

22

B
P  

The midline is at 1y   

 

 

Amplitude, midline, and period, when combined with vertical flips, allow us to write 

equations for a variety of sinusoidal situations. 

 

 

Try it Now 

3. If a sinusoidal function starts on the midline at point (0,3), has an amplitude of 2, 

and a period of 4, write a formula for the function. 

  

 

 

 

 

 

y = k 
A 

A 

P 

P 
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Example 8 

Find a formula for the sinusoidal function 

graphed here. 

 

The graph oscillates from a low of -1 to a 

high of 3, putting the midline at y = 1, 

halfway between. 

 

The amplitude will be 2, the distance from 

the midline to the highest value (or lowest 

value) of the graph. 

 

The period of the graph is 8.  We can measure this from the first peak at x = -2 to the 

second at x = 6.  Since the period is 8, the stretch/compression factor we will use will be 

48

22 


P
B  

 

At x = 0, the graph is at the midline value, which tells us the graph can most easily be 

represented as a sine function.  Since the graph then decreases, this must be a vertical 

reflection of the sine function.  Putting this all together, 

 1
4

sin2)( 







 ttf


 

 

 

With these transformations, we are ready to answer the Ferris wheel problem from the 

beginning of the section. 

 

 

Example 9 

The London Eye is a huge Ferris wheel with diameter 135 meters (443 feet) in London, 

England, which completes one rotation every 30 minutes.  Riders board from a platform 

2 meters above the ground.  Express a rider’s height above ground as a function of time 

in minutes. 

 

With a diameter of 135 meters, the wheel has a radius of 67.5 meters.  The height will 

oscillate with amplitude of 67.5 meters above and below the center. 

 

Passengers board 2 meters above ground level, so the center of the wheel must be 

located 67.5 + 2 = 69.5 meters above ground level.  The midline of the oscillation will 

be at 69.5 meters. 

 

The wheel takes 30 minutes to complete 1 revolution, so the height will oscillate with 

period of 30 minutes. 

 

Lastly, since the rider boards at the lowest point, the height will start at the smallest 

value and increase, following the shape of a flipped cosine curve. 
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Putting these together: 

Amplitude: 67.5 

Midline: 69.5 

Period: 30, so 
1530

2 
B   

Shape: negative cosine 

 

An equation for the rider’s height would be 

5.69
15

cos5.67)( 







 tth


 

 

 

Try it Now 

4. The Ferris wheel at the Puyallup Fair2 has a diameter of about 70 

feet and takes 3 minutes to complete a full rotation.  Passengers 

board from a platform 10 feet above the ground.  Write an 

equation for a rider’s height above ground over time.  

 

 

 

While these transformations are sufficient to represent many situations, occasionally we 

encounter a sinusoidal function that does not have a vertical intercept at the lowest point, 

highest point, or midline.  In these cases, we need to use horizontal shifts.  Recall that 

when the inside of the function is factored, it reveals the horizontal shift. 

 

 

Horizontal Shifts of Sine and Cosine 

Given an equation in the form   khtBAtf  )(sin)(  or   khtBAtf  )(cos)(  

h is the horizontal shift of the function 

 

 

Example 10 

Sketch a graph of 









44
sin3)(


ttf . 

 

To reveal the horizontal shift, we first need to factor inside the function:  









 )1(

4
sin3)( ttf


 

                                                 
2 Photo by photogirl7.1, http://www.flickr.com/photos/kitkaphotogirl/432886205/sizes/z/, CC-BY 

http://www.flickr.com/photos/kitkaphotogirl/432886205/sizes/z/
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This graph will have the shape of a sine function, starting at the midline and increasing, 

with an amplitude of 3.  The period of the graph will be 8
4

2

4

22









B
P .  

Finally, the graph will be shifted to the right by 1.   

 

 
 

 

In some physics and mathematics books, you will hear the horizontal shift referred to as 

phase shift.  In other physics and mathematics books, they would say the phase shift of 

the equation above is 
4


, the value in the unfactored form.  Because of this ambiguity, we 

will not use the term phase shift any further, and will only talk about the horizontal shift. 

 

 

Example 11 

Find a formula for the function graphed here. 

 

With highest value at 1 and lowest value at -5, 

the midline will be halfway between at -2.   

 

The distance from the midline to the highest or 

lowest value gives an amplitude of 3. 

 

The period of the graph is 6, which can be 

measured from the peak at x = 1 to the next peak 

at x = 7, or from the distance between the lowest points.  This gives 
36

22 


P
B . 

 

For the shape and shift, we have more than one option.  We could either write this as: 

 A cosine shifted 1 to the right 

 A negative cosine shifted 2 to the left 

 A sine shifted ½ to the left 

 A negative sine shifted 2.5 to the right 
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While any of these would be fine, the cosine shifts are easier to work with than the sine 

shifts in this case, because they involve integer values.  Writing these: 

2)1(
3

cos3)( 







 xxy


   or 

2)2(
3

cos3)( 







 xxy


 

 

Again, these functions are equivalent, so both yield the same graph. 

 

 

Try it Now 

5. Write a formula for the function graphed 

here. 

 

 

 

 

 

 

 

 

Important Topics of This Section 

Periodic functions 

Sine and cosine function from the unit circle 

Domain and range of sine and cosine functions 

Sinusoidal functions 

Negative angle identity 

Simplifying expressions 

Transformations 

 Amplitude 

 Midline 

 Period 

 Horizontal shifts 

 

 

Try it Now Answers 

1. 7 

2. -4 

3. ( ) 2sin 3
2

f x x
 

  
 

 

4. 
2

( ) 35cos 45
3

h t t
 

   
 

 

5. Two possibilities: ( ) 4cos ( 3.5) 4
5

f x x
 

   
 

 or ( ) 4sin ( 1) 4
5

f x x
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Section 6.1 Exercises 

1. Sketch a graph of    3sinf x x  . 

2. Sketch a graph of    4sinf x x . 

3. Sketch a graph of    2cosf x x . 

4.  Sketch a graph of    4cosf x x  . 

 

For the graphs below, determine the amplitude, midline, and period, then find a formula 

for the function. 

  

5.       6.  

  
 

7.       8. 

  
 

9.       10.  
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For each of the following equations, find the amplitude, period, horizontal shift, and 

midline. 

 

11. 3sin(8( 4)) 5y x    

 

12. 4sin ( 3) 7
2

y x
 

   
 

 

 

13. 2sin(3 21) 4y x    

 

14. 5sin(5 20) 2y x    

 

15. sin 3
6

y x



 

   
 

 

 

16. 
7 7

8sin 6
6 2

y x
  

   
 

 

 

Find a formula for each of the functions graphed below.   

 

17.  

  

18.  
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19.  

 

20.  

  

21. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature is 50 degrees at midnight and the high and low 

temperature during the day are 57 and 43 degrees, respectively. Assuming t is the 

number of hours since midnight, find a function for the temperature, D, in terms of t. 

 

22. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature is 68 degrees at midnight and the high and low 

temperature during the day are 80 and 56 degrees, respectively. Assuming t is the 

number of hours since midnight, find a function for the temperature, D, in terms of t. 

 

23. A Ferris wheel is 25 meters in diameter and boarded from a platform that is 1 meters 

above the ground. The six o'clock position on the Ferris wheel is level with the 

loading platform. The wheel completes 1 full revolution in 10 minutes. The function 

( )h t  gives your height in meters above the ground t minutes after the wheel begins to 

turn.   

a. Find the amplitude, midline, and period of  h t . 

b. Find a formula for the height function  h t . 

c. How high are you off the ground after 5 minutes? 

 

24. A Ferris wheel is 35 meters in diameter and boarded from a platform that is 3 meters 

above the ground. The six o'clock position on the Ferris wheel is level with the 

loading platform. The wheel completes 1 full revolution in 8 minutes. The function 

( )h t  gives your height in meters above the ground t minutes after the wheel begins to 

turn.   

a. Find the amplitude, midline, and period of  h t . 

b. Find a formula for the height function  h t . 

c. How high are you off the ground after 4 minutes? 
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Section 6.2 Graphs of the Other Trig Functions 

 

In this section, we will explore the graphs of the other four trigonometric functions.  

We’ll begin with the tangent function.  Recall that in Chapter 5 we defined tangent as y/x 

or sine/cosine, so you can think of the tangent as the slope of a line through the origin 

making the given angle with the positive x axis.  At an angle of 0, the line would be 

horizontal with a slope of zero.  As the angle increases towards π/2, the slope increases 

more and more.  At an angle of π/2, the line would be vertical and the slope would be 

undefined.  Immediately past π/2, the line would have a steep negative slope, giving a 

large negative tangent value.  There is a break in the function at π/2, where the tangent 

value jumps from large positive to large negative.   

 

We can use these ideas along with the definition of 

tangent to sketch a graph.  Since tangent is defined 

as sine/cosine, we can determine that tangent will 

be zero when sine is zero:  at -π, 0, π, and so on.  

Likewise, tangent will be undefined when cosine is 

zero:  at -π/2, π/2, and so on. 

 

The tangent is positive from 0 to π/2 and π to 3π/2, 

corresponding to quadrants 1 and 3 of the unit 

circle. 

 

Using technology, we can obtain a graph of tangent on a standard grid. 

 

Notice that the graph appears to repeat itself.  For 

any angle on the circle, there is a second angle with 

the same slope and tangent value halfway around the 

circle, so the graph repeats itself with a period of π; 

we can see one continuous cycle from - π/2 to π/2, 

before it jumps and repeats itself.  

  

The graph has vertical asymptotes and the tangent is 

undefined wherever a line at that angle would be 

vertical: at π/2, 3π/2, and so on.  While the domain 

of the function is limited in this way, the range of the 

function is all real numbers. 

 

 

Features of the Graph of Tangent 

The graph of the tangent function )tan()(  m  

The period of the tangent function is π 

The domain of the tangent function is 


 k
2

, where k is an integer 

The range of the tangent function is all real numbers, ( , )   
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With the tangent function, like the sine and cosine functions, horizontal 

stretches/compressions are distinct from vertical stretches/compressions.  The horizontal 

stretch can typically be determined from the period of the graph.  With tangent graphs, it 

is often necessary to determine a vertical stretch using a point on the graph. 

 

 

Example 1 

Find a formula for the function graphed 

here. 

 

The graph has the shape of a tangent 

function, however the period appears to 

be 8. We can see one full continuous 

cycle from -4 to 4, suggesting a 

horizontal stretch.  To stretch π to 8, the 

input values would have to be 

multiplied by


8
.  Since the constant k 

in  ( ) tanf a k  is the reciprocal of 

the horizontal stretch 


8
, the equation must have form 









 




8
tan)( af . 

We can also think of this the same way we did with sine and cosine.  The period of the 

tangent function is   but it has been transformed and now it is 8; remember the ratio of 

the “normal period” to the “new period” is 
8


and so this becomes the value on the 

inside of the function that tells us how it was horizontally stretched. 

 

To find the vertical stretch a, we can use a point on the graph.  Using the point (2, 2) 




















4
tan2

8
tan2


aa .   Since 1

4
tan 








,   a = 2 

 

This function would have a formula 







 




8
tan2)(f . 

 

 

Try it Now 

1. Sketch a graph of 







 




6
tan3)(f . 
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For the graph of secant, we remember the reciprocal identity where 
)cos(

1
)sec(


  .   

Notice that the function is undefined when the cosine is 0, leading to a vertical asymptote 

in the graph at π/2, 3π/2, etc.  Since the cosine is always no more than one in absolute 

value, the secant, being the reciprocal, will always be no less than one in absolute value.  

Using technology, we can generate the graph.  The graph of the cosine is shown dashed 

so you can see the relationship. 

)cos(

1
)sec()(


 f  

 
 

The graph of cosecant is similar.  In fact, since 







 




2
cos)sin( , it follows that 









 




2
sec)csc( , suggesting the cosecant graph is a horizontal shift of the secant 

graph.  This graph will be undefined where sine is 0.  Recall from the unit circle that this 

occurs at 0, π, 2π, etc.  The graph of sine is shown dashed along with the graph of the 

cosecant. 

)sin(

1
)csc()(


 f  
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Features of the Graph of Secant and Cosecant 

The secant and cosecant graphs have period 2π like the sine and cosine functions. 

Secant has domain 


 k
2

, where k is an integer 

Cosecant has domain  k , where k is an integer 

Both secant and cosecant have range of ),1[]1,(   

 

 

Example 2 

Sketch a graph of 1
2

csc2)( 







 


f .  What is the domain and range of this 

function? 

 

The basic cosecant graph has vertical asymptotes at the integer multiples of π.  Because 

of the factor 
2


 inside the cosecant, the graph will be compressed by 



2
, so the vertical 

asymptotes will be compressed to kk 2
2

 


 .  In other words, the graph will have 

vertical asymptotes at the integer multiples of 2, and the domain will correspondingly 

be k2 , where k is an integer. 

 

The basic sine graph has a range of [-1, 1].  The vertical stretch by 2 will stretch this to 

[-2, 2], and the vertical shift up 1 will shift the range of this function to [-1, 3]. 

 

The basic cosecant graph has a range of ),1[]1,(  . The vertical stretch by 2 will 

stretch this to ),2[]2,(  , and the vertical shift up 1 will shift the range of this 

function to ),3[]1,(  . 

Sketching a graph, 

 
 

Notice how the graph of the transformed cosecant relates to the graph of 

1
2

sin2)( 







 


f  shown dashed. 
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Try it Now 

2. Given the graph of 

1
2

cos2)( 







 


f  shown, sketch 

the graph of  1
2

sec2)( 







 


g  on 

the same axes. 

 

  

 

 

Finally, we’ll look at the graph of cotangent.  Based on its definition as the ratio of cosine 

to sine, it will be undefined when the sine is zero:  at at 0, π, 2π, etc.  The resulting graph 

is similar to that of the tangent.  In fact, it is a horizontal flip and shift of the tangent 

function, as we’ll see shortly in Example 3. 

)sin(

)cos(

)tan(

1
)cot()(






 f  

 
 

 

Features of the Graph of Cotangent 

The cotangent graph has period π 

Cotangent has domain  k , where k is an integer 

Cotangent has range of all real numbers, ( , )   

 

In Section 6.1 we determined that the sine function was an odd function and the cosine 

was an even function by observing the graph and establishing the negative angle 

identities for cosine and sine.  Similarly, you may notice from its graph that the tangent 

function appears to be odd.  We can verify this using the negative angle identities for sine 

and cosine: 

 
 
 

 
 

 







 tan

cos

sin

cos

sin
tan 







  

 

The secant, like the cosine it is based on, is an even function, while the cosecant, like the 

sine, is an odd function. 
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Negative Angle Identities Tangent, Cotangent, Secant and Cosecant 

    tantan        cotcot   

 

    secsec        csccsc   

 

 

Example 3 

Prove that   









2
cottan


  

 

 tan    Using the definition of tangent 

 
 


cos

sin
    Using the cofunction identities 





























2
sin

2
cos

  Using the definition of cotangent 









 



2
cot   Factoring a negative from the inside 



















2
cot


   Using the negative angle identity for cot 











2
cot


  

 

 

Important Topics of This Section 

The tangent and cotangent functions 

 Period 

 Domain 

 Range 

The secant and cosecant functions 

 Period 

 Domain 

 Range 

Transformations  

Negative Angle identities 
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Try it Now Answers 

 

1.  
 

 

2.  
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Section 6.2 Exercises 

 

Match each trigonometric function with one of the graphs. 

1.    tanf x x   2.     sec xxf   

3.   csc( )f x x   4.    cotf x x  

  I       II  

III     IV  

 

Find the period and horizontal shift of each of the following functions. 

5.    2tan 4 32f x x   

6.    3tan 6 42g x x   

7.    2sec 1
4

h x x
 

  
 

 

8.   3sec 2
2

k x x
  

   
  

  

9.   6csc
3

m x x



 

  
 

 

10.  
5 20

4csc
3 3

n x x
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11. Sketch a graph of #7 above. 

12. Sketch a graph of #8 above. 

13. Sketch a graph of #9 above. 

14. Sketch a graph of #10 above. 

 

15. Sketch a graph of   tan
2

j x x
 

  
 

. 

16. Sketch a graph of   2 tan
2

p t t
 

  
 

. 

 

Find a formula for each function graphed below. 

  

17.   18.  

 

 

  

19.  20.  
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21. If tan 1.5x   , find  tan x . 

22. If tan 3x  , find  tan x . 

23. If sec 2x  , find  sec x . 

24. If sec 4x   , find  sec x . 

25. If csc 5x   , find  csc x . 

26. If csc 2x  , find  csc x . 

 

Simplify each of the following expressions completely. 

27.      cot cos sinx x x     

28.      cos tan sinx x x   
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Section 6.3 Inverse Trig Functions 

 

In previous sections we have evaluated the trigonometric functions at various angles, but 

at times we need to know what angle would yield a specific sine, cosine, or tangent value.  

For this, we need inverse functions.  Recall that for a one-to-one function, if baf )( , 

then an inverse function would satisfy abf  )(1 . 

 

You probably are already recognizing an issue – that the sine, cosine, and tangent 

functions are not one-to-one functions.  To define an inverse of these functions, we will 

need to restrict the domain of these functions to yield a new function that is one-to-one.  

We choose a domain for each function that includes the angle zero. 

 

Sine, limited to 









2
,

2


 Cosine, limited to  ,0  Tangent, limited to ,

2 2

  
 
 

 

         
 

On these restricted domains, we can define the inverse sine, inverse cosine, and inverse 

tangent functions. 

 

 

Inverse Sine, Cosine, and Tangent Functions 

For angles in the interval 









2
,

2


, if   asin , then    a1sin  

For angles in the interval  ,0 , if   acos , then    a1cos  

For angles in the interval 









2
,

2


, if   atan , then    a1tan  

 

 1sin x
 has domain [-1, 1] and range 










2
,

2


 

 1cos x
 has domain [-1, 1] and range  ,0  

 1tan x
 has domain of all real numbers and range 










2
,

2
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The  1sin x  is sometimes called the arcsine function, and notated  aarcsin .  

The  1cos x
 is sometimes called the arccosine function, and notated  aarccos .  

The  1tan x
 is sometimes called the arctangent function, and notated  aarctan .  

 

The graphs of the inverse functions are shown here: 

 

 1sin x     1cos x
    1tan x

 

   
 

Notice that the output of each of these inverse functions is an angle.   

 

 

Example 1 

Evaluate 

a)  








2

1
sin 1

  b) 















2

2
sin 1  c) 
















2

3
cos 1  d)  1tan 1

 

 

a) Evaluating 








2

1
sin 1

 is the same as asking what angle would have a sine value of 
2

1
.  

In other words, what angle θ would satisfy  
2

1
sin  ?  There are multiple angles that 

would satisfy this relationship, such as 
6


 and 

6

5
 , but we know we need the angle in 

the  interval 









2
,

2


, so the answer will be 

62

1
sin 1 









.  Remember that the 

inverse is a function so for each input, we will get exactly one output. 

 

b) Evaluating 















2

2
sin 1

, we know that 
4

5
 and 

4

7
 both have a sine value of 

2

2
 , but neither is in the interval 










2
,

2


.  For that, we need the negative angle 

coterminal with 
4

7
.  

42

2
sin 1 

















. 
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c) Evaluating 















2

3
cos 1 , we are looking for an angle in the interval  ,0  with a 

cosine value of 
2

3
 .  The angle that satisfies this is 

6

5

2

3
cos 1 















 . 

 

d) Evaluating  1tan 1
, we are looking for an angle in the interval 










2
,

2


 with a 

tangent value of 1.  The correct angle is  
4

1tan 1 
 . 

 

 

Try It Now 

1. Evaluate  

a)  1sin 1 
  b)  1tan 1 

  c)  1cos 1 
  d) 









2

1
cos 1

 

 

 

Example 2 

Evaluate  97.0sin 1
 using your calculator. 

 

Since the output of the inverse function is an angle, your calculator will give you a 

degree value if in degree mode, and a radian value if in radian mode. 

 

In radian mode, 
1sin (0.97) 1.3252   In degree mode,  1sin 0.97 75.93    

 

 

Try it Now 

2. Evaluate  4.0cos 1 
 using your calculator. 

 

 

In Section 5.5, we worked with trigonometry on a right triangle to solve for the sides of a 

triangle given one side and an additional angle.  Using the inverse trig functions, we can 

solve for the angles of a right triangle given two sides. 

 

 

Example 3 

Solve the triangle for the angle θ. 

 

Since we know the hypotenuse and the side adjacent 

to the angle, it makes sense for us to use the cosine 

function. 

 

12 

9 

θ 
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12

9
cos    Using the definition of the inverse, 









 

12

9
cos 1  Evaluating 

7227.0 , or about 41.4096° 

 

 

There are times when we need to compose a trigonometric function with an inverse 

trigonometric function.  In these cases, we can find exact values for the resulting 

expressions 

 

 

Example 4 

Evaluate 
















6

13
cossin 1 

.  

 

a) Here, we can directly evaluate the inside of the composition.   

2

3

6

13
cos 







 
 

Now, we can evaluate the inverse function as we did earlier. 

32

3
sin 1 

















 

 

 

Try it Now 

3. Evaluate 

















4

11
sincos 1 

. 

 

 

Example 5 

Find an exact value for 
















5

4
cossin 1 . 

 

Beginning with the inside, we can say there is some angle so 







 

5

4
cos 1 , which 

means  
5

4
cos  , and we are looking for  sin .  We can use the Pythagorean identity 

to do this.  
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    1cossin 22     Using our known value for cosine 

  1
5

4
sin

2

2 







    Solving for sine 

 
25

16
1sin 2   

 
5

3

25

9
sin   

 

Since we know that the inverse cosine always gives an angle on the interval  ,0 , we 

know that the sine of that angle must be positive, so 1 4 3
sin cos sin( )

5 5
  

   
  

 

 

 

Example 6 

Find an exact value for 
















4

7
tansin 1 . 

 

While we could use a similar technique as in the last example, we 

will demonstrate a different technique here.  From the inside, we 

know there is an angle so  
4

7
tan  .  We can envision this as the 

opposite and adjacent sides on a right triangle. 

 

Using the Pythagorean Theorem, we can find the hypotenuse of 

this triangle: 
222 74 hypotenuse  

65hypotenuse  

 

Now, we can evaluate the sine of the angle as opposite side divided by hypotenuse 

 
65

7
sin   

 

This gives us our desired composition 

1 7 7
sin tan sin( )

4 65
  

   
  

. 

 

 

Try it Now  

4. Evaluate 
















9

7
sincos 1 . 

 

7 

4 

θ 
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We can also find compositions involving algebraic expressions. 

 

 

Example 7 

Find a simplified expression for 
















3
sincos 1 x

, for 33  x . 

 

We know there is an angle θ so that  
3

sin
x

 .  Using the Pythagorean Theorem, 

    1cossin 22     Using our known expression for sine 

  1cos
3

2

2











x
   Solving for cosine 

 
9

1cos
2

2 x
  

 
3

9

9

9
cos

22 xx 



  

 

Since we know that the inverse sine must give an angle on the interval 









2
,

2


, we 

can deduce that the cosine of that angle must be positive.  This gives us 

 

3

9

3
sincos

2
1 xx 
















  

 

 

Try it Now 

5. Find a simplified expression for   x4tansin 1
, for 

4

1

4

1
 x . 

 

 

Important Topics of This Section 

Inverse trig functions:  arcsine, arccosine and arctangent 

Domain restrictions 

Evaluating inverses using unit circle values and the calculator 

Simplifying numerical expressions involving the inverse trig functions 

Simplifying algebraic expressions involving the inverse trig functions 
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Try it Now Answers 

1. a) 
2


    b) 

4


     c)     d) 

3


 

 

2. 1.9823 or 113.578°  

 

3. 
4

3
  

4. 
9

24
 

5. 
116

4

2 x

x
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Section 6.3 Exercises 

 

Evaluate the following expressions, giving the answer in radians. 

1. 1 2
sin

2


 
  
 

  2. 1 3
sin

2


 
  
 

  3. 
1 1

sin
2

  
 
 

   4. 1 2
sin

2


 
  
 

  

5. 
1 1

cos
2

  
 
 

   6. 1 2
cos

2


 
  
 

  7. 1 2
cos

2


 
  
 

 8. 1 3
cos

2


 
  
 

 

9.  1tan 1
   10.  1tan 3

  11.  1tan 3   12.  1tan 1   

 

 

Use your calculator to evaluate each expression, giving the answer in radians. 

13.  4.0cos 1 
 14.  8.0cos 1

  15.  8.0sin 1 
 16.  6tan 1

 

 

Find the angle θ in degrees. 

17.   18.  

 

 

Evaluate the following expressions. 

19. 
















4
cossin 1 

    20. 
















6
sincos 1 

 

21. 
















3

4
cossin 1 

    22. 
















4

5
sincos 1 

 

23. 
















7

3
sincos 1     24. 

















9

4
cossin 1  

25.   4tancos 1
    26. 

















3

1
sintan 1  

 

Find a simplified expression for each of the following. 

27. 
















5
cossin 1 x

, for 55  x   28. 
















2
costan 1 x

, for 22  x   

29.   x3tansin 1
    30.   x4tancos 1

 

 

 

12 

19 

θ 

10 
7 

θ 
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Section 6.4 Solving Trig Equations 

 

In Section 6.1, we determined the height of a rider on the London Eye Ferris wheel could 

be determined by the equation 5.69
15

cos5.67)( 







 tth


.   

If we wanted to know length of time during which the rider is more than 100 meters 

above ground, we would need to solve equations involving trig functions. 

 

 

Solving using known values 
In the last chapter, we learned sine and cosine values at commonly encountered angles.  

We can use these to solve sine and cosine equations involving these common angles. 

 

 

Example 1 

Solve  
2

1
sin t for all possible values of t. 

 

Notice this is asking us to identify all angles, t, that have a sine value of 
1

2
t  .  While 

evaluating a function always produces one result, solving for an input can yield multiple 

solutions.  Two solutions should immediately jump to mind from the last chapter: 
6


t  

and 
6

5
t  because they are the common angles on the unit circle. 

 

Looking at a graph confirms that there are more than these two solutions.  While eight 

are seen on this graph, there are an infinite number of solutions! 

 
Remember that any coterminal angle will also have the same sine value, so any angle 

coterminal with these two is also a solution.  Coterminal angles can be found by adding 

full rotations of 2π, so we end up with a set of solutions: 

kt 


2
6
  where k is an integer, and kt 


2

6

5
  where k is an integer 
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Example 2 

A circle of radius 25  intersects the line x = -5 at two points.  Find the angles   on the 

interval  20  , where the circle and line intersect.  

 

The x coordinate of a point on a circle can be found as  cosrx  , so the x coordinate 

of points on this circle would be  cos25x .  To find where the line x = -5 

intersects the circle, we can solve for where the x value on the circle would be -5 

 cos255    Isolating the cosine 

 cos
2

1



   Recall that 

2

2

2

1 



, so we are solving 

 

 
2

2
cos


    

 

We can recognize this as one of our special cosine values 

from our unit circle, and it corresponds with angles 

4

3
   and 

4

5
   

 

 

Try it Now 

1. Solve  tan 1t   for all possible values of t. 

 

 

Example 3 

The depth of water at a dock rises and falls with the tide, following the equation 

7
12

sin4)( 







 ttf


, where t is measured in hours after midnight.  A boat requires a 

depth of 9 feet to tie up at the dock.   Between what times will the depth be 9 feet? 

 

To find when the depth is 9 feet, we need to solve f(t) = 9. 

97
12

sin4 







t


  Isolating the sine 

2
12

sin4 







t


  Dividing by 4 

2

1

12
sin 








t


  We know  

2

1
sin   when 

6

5

6





  or

 
 

While we know what angles have a sine value of 
1

2
, because of the horizontal 

stretch/compression, it is less clear how to proceed.   
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To deal with this, we can make a substitution, defining a new temporary variable u to be 

tu
12


 , so our equation becomes 

 
2

1
sin u    

From earlier, we saw the solutions to this equation were 

ku 


2
6
  where k is an integer, and  

ku 


2
6

5
  where k is an integer 

 

Undoing our substitution, we can replace the u in the solutions with tu
12


  and solve 

for t.   

 

kt 


2
612
  where k is an integer, and  kt 


2

6

5

12
  where k is an integer. 

 

Dividing by π/12, we obtain solutions 

 

kt 242  where k is an integer, and  

kt 2410  where k is an integer.  

 

The depth will be 9 feet and the boat will 

be able to approach the dock between 2am 

and 10am.  

 

Notice how in both scenarios, the 24k 

shows how every 24 hours the cycle will 

be repeated. 

 

 

In the previous example, looking back at the original simplified equation 
2

1

12
sin 








t


, 

we can use the ratio of the “normal period” to the stretch factor to find the period.  

24
12

2

12

2


















 





;  notice that the sine function has a period of 24, which is reflected 

in the solutions: there were two unique solutions on one full cycle of the sine function, 

and additional solutions were found by adding multiples of a full period. 

 

 

Try it Now 

2. Solve   115sin4 t  for all possible values of t. 
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Solving using the inverse trig functions 

The solutions to   3.0sin   do not involve any of the “special” values of the trig 

functions to we have learned.  To find the solutions, we need to use the inverse sine 

function.  

 

 

Example 4 

Use the inverse sine function to find one solution to   8.0sin  . 

 

Since this is not a known unit circle value, calculating the inverse,  8.0sin 1 .  This 

requires a calculator and we must approximate a value for this angle.  If your calculator 

is in degree mode, your calculator will give you an angle in degrees as the output.  If 

your calculator is in radian mode, your calculator will give you an angle in radians.  In 

radians,   927.08.0sin 1   , or in degrees,  1sin 0.8 53.130    . 

 

 

If you are working with a composed trig function and you are not solving for an angle, 

you will want to ensure that you are working in radians.  In calculus, we will almost 

always want to work with radians since they are unit-less. 

 

Notice that the inverse trig functions do exactly what you would expect of any function – 

for each input they give exactly one output.  While this is necessary for these to be a 

function, it means that to find all the solutions to an equation like   8.0sin  , we need 

to do more than just evaluate the inverse function. 

 

 

Example 5 

Find all solutions to   8.0sin  . 

 

We would expect two unique angles on one cycle to have 

this sine value.  In the previous example, we found one 

solution to be   927.08.0sin 1   .  To find the other, we 

need to answer the question “what other angle has the same 

sine value as an angle of 0.927?”  On a unit circle, we 

would recognize that the second angle would have the 

same reference angle and reside in the second quadrant.  

This second angle would be located at )8.0(sin 1  , 

or approximately 214.2927.0   

To find more solutions we recall that angles coterminal with these two would have the 

same sine value, so we can add full cycles of 2π. 

 

k 2)8.0(sin 1  
 and k 2)8.0(sin 1  

 where k is an integer, 

or approximately, k 2927.0   and k 2214.2   where k is an integer. 

0.8 

1 

0.929 
θ 
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Example 6 

Find all solutions to  
9

8
sin x  on the interval  3600 x . 

 

First we will turn our calculator to degree mode.  Using the inverse, we can find one 

solution 







  734.62

9

8
sin 1x .  While this angle satisfies the equation, it does not 

lie in the domain we are looking for.  To find the angles in the desired domain, we start 

looking for additional solutions.   

 

First, an angle coterminal with  734.62 will have the same sine.  By adding a full 

rotation, we can find an angle in the desired domain with the same sine. 

 266.297360734.62x  

 

There is a second angle in the desired domain that lies in the third quadrant.  Notice that 

734.62  is the reference angle for all solutions, so this second solution would be 

734.62  past 180  

 734.242180734.62x  

 

The two solutions on  3600 x  are x = 266.297 and x = 734.242  

 

 

Example 7 

Find all solutions to   3tan x  on 20  x . 

 

Using the inverse tangent function, we can find one solution   249.13tan 1  x .  

Unlike the sine and cosine, the tangent function only attains any output value once per 

cycle, so there is no second solution in any one cycle. 

 

By adding π, a full period of tangent function, we can find 

a second angle with the same tangent value.  If additional 

solutions were desired, we could continue to add multiples 

of π, so all solutions would take on the form 

kx  249.1 , however we are only interested in 

20  x . 

391.4249.1  x  

 

The two solutions on 20  x  are x = 1.249 and x = 4.391. 

 

 

Try it Now 

3. Find all solutions to  tan 0.7x   on  3600 x . 

 

 

1 

1.249 

4.391 
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Example 8 

Solve   24cos3 t  for all solutions on one cycle, 0 2t    

 

  24cos3 t  Isolating the cosine 

  2cos3 t  

 
3

2
cos t   Using the inverse, we can find one solution 

301.2
3

2
cos 1 








 t  

 

Thinking back to the circle, a second angle with the same 

cosine would be located in the third quadrant.  Notice that 

the location of this angle could be represented as 

301.2t .  To represent this as a positive angle we could 

find a coterminal angle by adding a full cycle. 

2301.2 t  = 3.982 

 

The equation has two solutions between 0 and 2π, at t = 2.301 and t = 3.982. 

 

 

Example 9 

Solve   2.03cos t  for all solutions on two cycles, 
3

4
0


 t . 

 

As before, with a horizontal compression it can be helpful to make a substitution, 

tu 3 .  Making this substitution simplifies the equation to a form we have already 

solved.  

  2.0cos u  

  369.12.0cos 1  u  

 

A second solution on one cycle would be located in the fourth quadrant with the same 

reference angle. 

914.4369.12  u  

 

In this case, we need all solutions on two cycles, so we need to find the solutions on the 

second cycle.  We can do this by adding a full rotation to the previous two solutions. 

197.112914.4

653.72369.1









u

u
 

 

Undoing the substitution, we obtain our four solutions: 

3t = 1.369, so t = 0.456 

3t = 4.914 so t = 1.638 

3t = 7.653, so t = 2.551 

3t = 11.197, so t = 3.732 

2

3


 

1 

2.301 

-2.301 

or 3.982 
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Example 10 

Solve   2sin3 t  for all solutions. 

 

  2sin3 t    Isolating the sine 

 
3

2
sin t    We make the substitution tu   

 
3

2
sin u    Using the inverse, we find one solution 

730.0
3

2
sin 1 








 u   

This angle is in the fourth quadrant.  A second angle with the same sine would be in the 

third quadrant with 0.730 as a reference angle: 

871.3730.0 u  

 

We can write all solutions to the equation  
3

2
sin u  as 

ku 2730.0   where k is an integer, or  

ku 2871.3   

 

Undoing our substitution, we can replace u in our solutions with tu   and solve for t 

kt  2730.0   or  kt  2871.3    Divide by π 

kt 2232.0   or kt 2232.1   

 

 

Try it Now 

4. Solve 03
2

sin5 







t


 for all solutions on one cycle, 20  t . 

 

 

Solving Trig Equations 
1) Isolate the trig function on one side of the equation 

2) Make a substitution for the inside of the sine, cosine, or tangent (or other trig 

function) 

3) Use inverse trig functions to find one solution 

4) Use symmetries to find a second solution on one cycle (when a second exists) 

5) Find additional solutions if needed by adding full periods 

6) Undo the substitution  

 

 

 

We now can return to the question we began the section with. 
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Example 11 

The height of a rider on the London Eye Ferris wheel can be determined by the equation 

5.69
15

cos5.67)( 







 tth


.  How long is the rider more than 100 meters above 

ground?   

 

To find how long the rider is above 100 meters, we first find the times at which the rider 

is at a height of 100 meters by solving h(t) = 100. 

5.69
15

cos5.67100 







 t


  Isolating the cosine 









 t

15
cos5.675.30


 












t

15
cos

5.67

5.30 
   We make the substitution tu

15


  

)cos(
5.67

5.30
u


   Using the inverse, we find one solution 

 

040.2
5.67

5.30
cos 1 










 u   

  

This angle is in the second quadrant.  A second angle with 

the same cosine would be symmetric in the third quadrant.  

This angle could be represented as u = -2.040, but we need a 

coterminal positive angle, so we add 2π: 

244.4040.22  u  

 

Now we can undo the substitution to solve for t 

040.2
15

t


 so t = 9.740 minutes after the start of the ride 

244.4
15

t


 so t = 20.264 minutes after the start of the ride 

 

A rider will be at 100 meters after 9.740 minutes, and again after 20.264.  From the 

behavior of the height graph, we know the rider will be above 100 meters between these 

times.  A rider will be above 100 meters for 20.265-9.740 = 10.523 minutes of the ride. 

 

 

Important Topics of This Section 

Solving trig equations using known values 

Using substitution to solve equations 

Finding answers in one cycle or period vs. finding all possible solutions 

Method for solving trig equations 

 

1 

u = 2.040 

u = -2.040 

or 4.244 
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Try it Now Answers 

1. 
4

k


  

2. kt
5

2

30


         kt

5

2

6


      

3.  992.34x  or  992.21499.34180x  

4. 3.590t   or 2.410t   
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Section 6.4 Exercises 

 

Give all answers in radians unless otherwise indicated. 

 

Find all solutions on the interval 0 2   . 

1.  2sin 2     2.  2sin 3    3.  2cos 1    4.  2cos 2    

5.  sin 1     6.  sin 0     7.  cos 0     8.  cos 1    

 

 

Find all solutions. 

9.  2cos 2   10.  2cos 1    11.  2sin 1    12.  2sin 3    

 

 

Find all solutions. 

13.  2sin 3 1    14.  2sin 2 3    15.  2sin 3 2     

16.  2sin 3 1     17.  2cos 2 1    18.  2cos 2 3    

19.  2cos 3 2     20.  2cos 2 1     21. cos 1
4




 
  

 
  

22. sin 1
3




 
  

 
  23.  2sin 1  .   24. 2cos 3

5




 
 

 
  

 

 

Find all solutions on the interval 0 2x   . 

25.  sin 0.27x   26.  sin  0.48x   27.  sin   0.58x   28.  sin 0.34x    

29.  cos 0.55x    30.  sin  0.28x   31.  cos  0.71x   32.  cos 0.07x    

 

 

Find the first two positive solutions. 

33.  7sin 6 2x    34.  7sin 5  6x   35.  5cos 3 3x    36.  3cos 4 2x   

37. 3sin 2
4

x
 

 
 

  38. 7sin 6
5

x
 

 
 

 39. 5cos 1
3

x
 

 
 

 40. 3cos 2
2

x
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Section 6.5 Modeling with Trigonometric Functions  

 

Solving right triangles for angles 

In Section 5.5, we used trigonometry on a right triangle to solve for the sides of a triangle 

given one side and an additional angle.  Using the inverse trig functions, we can solve for 

the angles of a right triangle given two sides. 

 

 

Example 1 

An airplane needs to fly to an airfield located 300 miles east and 200 miles north of its 

current location.  At what heading should the airplane fly?   In other words, if we ignore 

air resistance or wind speed, how many degrees north of east should the airplane fly? 

 

We might begin by drawing a picture and labeling all of 

the known information.  Drawing a triangle, we see we 

are looking for the angle α.  In this triangle, the side 

opposite the angle α is 200 miles and the side adjacent 

is 300 miles.  Since we know the values for the  

opposite and adjacent sides, it makes sense to use the 

tangent function. 

300

200
)tan(    Using the inverse, 

588.0
300

200
tan 1 








  , or equivalently about 33.7 degrees. 

 

The airplane needs to fly at a heading of 33.7 degrees north of east. 

 

 

Example 2 

OSHA safety regulations require that the base of a ladder be placed 1 foot from the wall 

for every 4 feet of ladder length3.  Find the angle such a ladder forms with the ground. 

 

For any length of ladder, the base needs to be one quarter of the distance 

the foot of the ladder is away from the wall.  Equivalently, if the base is a 

feet from the wall, the ladder can be 4a feet long.  Since a is the side 

adjacent to the angle and 4a is the hypotenuse, we use the cosine function. 

4

1

4
)cos( 

a

a
   Using the inverse 

 

52.75
4

1
cos 1 








   degrees 

The ladder forms a 75.52 degree angle with the ground. 

                                                 
3 http://www.osha.gov/SLTC/etools/construction/falls/4ladders.html 

200 

300 

α 

a 

4a 

θ 
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Try it Now 

1. One of the cables that anchor the center of the London Eye Ferris wheel to the 

ground must be replaced.  The center of the Ferris wheel is 69.5 meters above the 

ground and the second anchor on the ground is 23 meters from the base of the Ferris 

wheel. What is the angle of elevation (from ground up to the center of the Ferris 

wheel) and how long is the cable? 

 

 

Example 3 

In a video game design, a map shows the location of other characters relative to the 

player, who is situated at the origin, and the direction they are facing.  A character 

currently shows on the map at coordinates (-3, 5).  If the player rotates 

counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate 

20 degrees clockwise.  Find the new coordinates of the character. 

 

To rotate the position of the character, we can imagine it 

as a point on a circle, and we will change the angle of 

the point by 20 degrees.  To do so, we first need to find 

the radius of this circle and the original angle. 

 

Drawing a right triangle inside the circle, we can find 

the radius using the Pythagorean Theorem: 

 
2 2 23 5

9 25 34

r

r

  

  

 

 

To find the angle, we need to decide first if we are going to find the acute angle of the 

triangle, the reference angle, or if we are going to find the angle measured in standard 

position.  While either approach will work, in this case we will do the latter.  Since for 

any point on a circle we know )cos(rx  , using our given information we get 

)cos(343    

)cos(
34

3



 








 
  964.120

34

3
cos 1  

While there are two angles that have this cosine value, the angle of 120.964 degrees is 

in the second quadrant as desired, so it is the angle we were looking for. 

 

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 

100.964 degrees.  We can then evaluate the coordinates of the rotated point 

109.1)964.100cos(34 x  

725.5)964.100sin(34 y  
 

The coordinates of the character on the rotated map will be (-1.109, 5.725). 
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Modeling with sinusoidal functions 

Many modeling situations involve functions that are periodic.  Previously we learned that 

sinusoidal functions are a special type of periodic function.  Problems that involve 

quantities that oscillate can often be modeled by a sine or cosine function and once we 

create a suitable model for the problem we can use that model to answer various 

questions. 

 

 

Example 4 

The hours of daylight in Seattle oscillate from a low of 8.5 hours in January to a high of 

16 hours in July4.  When should you plant a garden if you want to do it during a month 

where there are 14 hours of daylight? 

 

To model this, we first note that the hours of daylight oscillate with a period of 12 

months.  With a low of 8.5 and a high of 16, the midline will be halfway between these 

values, at 25.12
2

5.816



.  The amplitude will be half the difference between the 

highest and lowest values: 75.3
2

5.816



, or equivalently the distance from the 

midline to the high or low value, 16-12.25=3.75.  Letting January be t = 0, the graph 

starts at the lowest value, so it can be modeled as a flipped cosine graph.  Putting this 

together, we get a model: 

25.12
6

cos75.3)( 







 tth


 

 

-cos(t) represents the flipped cosine,   

3.75 is the amplitude,  

12.25 is the midline,  

2

12 6

 
  corresponds to the horizontal stretch, 

found by using the ratio of the “original period / new period” 

 

h(t) is our model for hours of day light t months after January.   

 

To find when there will be 14 hours of daylight, we solve h(t) = 14. 

 

25.12
6

cos75.314 







 t


  Isolating the cosine 









 t

6
cos75.375.1


  Subtracting 12.25 and dividing by -3.75 









 t

6
cos

75.3

75.1 
   Using the inverse 

                                                 
4 http://www.mountaineers.org/seattle/climbing/Reference/DaylightHrs.html 

3.75 y=12.25 
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0563.2
75.3

75.1
cos

6

1 







 t


  multiplying by the reciprocal 

927.3
6

0563.2 


t   t=3.927 months past January 

 

There will be 14 hours of daylight 3.927 months into the year, or near the end of April. 

 

While there would be a second time in the year when there are 14 hours of daylight, 

since we are planting a garden, we would want to know the first solution, in spring, so 

we do not need to find the second solution in this case. 

 

 

 

Try it Now 

2. The author’s 

monthly gas usage 

(in therms) is shown 

here.  Find a 

function to model 

the data.   

 

 

 

 

Example 6 

An object is connected to the wall with a spring that has a 

natural length of 20 cm.  The object is pulled back 8 cm past 

the natural length and released.  The object oscillates 3 times 

per second.  Find an equation for the horizontal position of the 

object ignoring the effects of friction.  How much time during each cycle is the object 

more than 27 cm from the wall? 

 

If we use the distance from the wall, x, as the desired output, then the object will 

oscillate equally on either side of the spring’s natural length of 20, putting the midline 

of the function at 20 cm.   

 

If we release the object 8 cm past the natural length, the amplitude of the oscillation will 

be 8 cm.   

 

We are beginning at the largest value and so this function can most easily be modeled 

using a cosine function. 

 

Since the object oscillates 3 times per second, it has a frequency of 3 and the period of 

one oscillation is 1/3 of second. Using this we find the horizontal compression using the 

ratios of the periods: 


6
3/1

2
 . 

0
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Using all this, we can build our model: 

  206cos8)(  ttx   

 

To find when the object is 27 cm from the wall, we can solve x(t) = 27 

  206cos827  t   Isolating the cosine 

 t6cos87   

 t6cos
8

7
    Using the inverse 

505.0
8

7
cos6 1 








 t   

0268.0
6

505.0



t  

 

Based on the shape of the graph, we can 

conclude that the object will spend the first 

0.0268 seconds more than 27 cm from the 

wall.  Based on the symmetry of the function, 

the object will spend another 0.0268 seconds 

more than 27 cm from the wall at the end of 

the cycle.  Altogether, the object spends 

0.0536 seconds each cycle at a distance 

greater than 27 cm from the wall. 

 

 

 

In some problems, we can use trigonometric functions to model behaviors more 

complicated than the basic sinusoidal function. 

 

 

Example 7 

A rigid rod with length 10 cm is attached 

to a circle of radius 4cm at point A as 

shown here.  The point B is able to freely 

move along the horizontal axis, driving a 

piston5.  If the wheel rotates 

counterclockwise at 5 revolutions per 

second, find the location of point B as a 

function of time.  When will the point B 

be 12 cm from the center of the circle? 

 

To find the position of point B, we can begin by finding the coordinates of point A.  

Since it is a point on a circle with radius 4, we can express its coordinates as 

))sin(4),cos(4(  , where θ is the angle shown.   

                                                 
5 For an animation of this situation, see http://www.mathdemos.org/mathdemos/sinusoidapp/engine1.gif  

A 

B 
10 cm 4cm 

θ 

http://www.mathdemos.org/mathdemos/sinusoidapp/engine1.gif
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The angular velocity is 5 revolutions per second, or equivalently 10π radians per 

second.  After t seconds, the wheel will rotate by 10 t   radians.  Substituting this, 

we can find the coordinates of A in terms of t.   

))10sin(4),10cos(4( tt   

 

Notice that this is the same value we would have obtained by observing that the period 

of the rotation is 1/5 of a second and calculating the stretch/compression factor:  

 




10

5
1

2

""

""


new

original
. 

 

Now that we have the coordinates of the point 

A, we can relate this to the point B.  By 

drawing a vertical line segment from A to the 

horizontal axis, we can form a right triangle.  

The height of the triangle is the y coordinate 

of the point A: 4sin(10 )t .  Using the 

Pythagorean Theorem, we can find the base 

length of the triangle: 

 
2 2 24sin(10 ) 10t b    

2 2100 16sin (10 )b t   

2100 16sin (10 )b t   

 

Looking at the x coordinate of the point A, we can see that the triangle we drew is 

shifted to the right of the y axis by 4cos(10 )t .  Combining this offset with the length 

of the base of the triangle gives the x coordinate of the point B: 
2( ) 4cos(10 ) 100 16sin (10 )x t t t     

 

To solve for when the point B will be 12 cm from the center of the circle, we need to 

solve x(t) = 12.   
212 4cos(10 ) 100 16sin (10 )t t       Isolate the square root 

212 4cos(10 ) 100 16sin (10 )t t       Square both sides 

 
2 212 4cos(10 ) 100 16sin (10 )t t       Expand the left side 

2 2144 96cos(10 ) 16cos (10 ) 100 16sin (10 )t t t       Move all terms to the left 
2 244 96cos(10 ) 16cos (10 ) 16sin (10 ) 0t t t       Factor out 16 

 2 244 96cos(10 ) 16 cos (10 ) sin (10 ) 0t t t       

 

At this point, we can utilize the Pythagorean Identity, which tells us that 
2 2cos (10 ) sin (10 ) 1t t   .   

 

A 

B 

10 cm 

b 
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Using this identity, our equation simplifies to 

 

44 96cos(10 ) 16 0t     Combine the constants and move to the right side 

96cos(10 ) 60t     Divide 

60
cos(10 )

96
t     Make a substitution 

96

60
)cos( u  

896.0
96

60
cos 1 








 u   By symmetry we can find a second solution 

388.5896.02  u   Undoing the substitution 

10 0.896t  , so t = 0.0285 

10 5.388t  , so t = 0.1715 

 

The point B will be 12 cm from the center of the circle 0.0285 seconds after the process 

begins, 0.1715 seconds after the process begins, and every 1/5 of a second after each of 

those values. 

 

 

Important Topics of This Section 

Modeling with trig equations 

Modeling with sinusoidal functions 

Solving right triangles for angles in degrees and radians 

 

 

Try it Now Answers 

1. Angle of elevation for the cable is 71.69 degrees and the cable is 73.21 m long 

2. Approximately ( ) 66cos ( 1) 87
6

G t t
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Section 6.5 Exercises 

 

In each of the following triangles, solve for the unknown side and angles. 

 

1.   2.  

 

 

 

 

3.  4.  

  

   

 

   

  

Find a possible formula for the trigonometric function whose values are in the following 

tables. 

5. 

x 0 1 2 3 4 5 6 

y -2 4 10 4 -2 4 10 

 

6.  

x 0 1 2 3 4 5 6 

y 1 -3 -7 -3 1 -3 -7 

 

 

7. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature for the day is 63 degrees and the low 

temperature of 37 degrees occurs at 5 AM. Assuming t is the number of hours since 

midnight, find an equation for the temperature, D, in terms of t. 

8. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature for the day is 92 degrees and the low 

temperature of 78 degrees occurs at 4 AM. Assuming t is the number of hours since 

midnight, find an equation for the temperature, D, in terms of t. 

9. A population of rabbits oscillates 25 above and below an average of 129 during the 

year, hitting the lowest value in January (t = 0).  

a. Find an equation for the population, P, in terms of the months since January, t. 

b. What if the lowest value of the rabbit population occurred in April instead? 

 

 

 

A 

5 

8 

B 

c 

B 

7 

3 

A 

c 

A 

b 

7 

15 
B 

B 

a 
10 

12 

A 
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10. A population of elk oscillates 150 above and below an average of 720 during the year, 

hitting the lowest value in January (t = 0).  

a. Find an equation for the population, P, in terms of the months since January, t. 

b. What if the lowest value of the rabbit population occurred in March instead? 

 

11. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature of 105 degrees occurs at 5 PM and the 

average temperature for the day is 85 degrees. Find the temperature, to the nearest 

degree, at 9 AM. 

 

12. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature of 84 degrees occurs at 6 PM and the 

average temperature for the day is 70 degrees. Find the temperature, to the nearest 

degree, at 7 AM. 

 

13. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature varies between 47 and 63 degrees during the day 

and the average daily temperature first occurs at 10 AM. How many hours after 

midnight does the temperature first reach 51 degrees? 

 

14. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature varies between 64 and 86 degrees during the day 

and the average daily temperature first occurs at 12 AM. How many hours after 

midnight does the temperature first reach 70 degrees? 

 

15. A Ferris wheel is 20 meters in diameter and boarded from a platform that is 2 meters 

above the ground. The six o'clock position on the Ferris wheel is level with the 

loading platform. The wheel completes 1 full revolution in 6 minutes. How many 

minutes of the ride are spent higher than 13 meters above the ground? 

  

16. A Ferris wheel is 45 meters in diameter and boarded from a platform that is 1 meter 

above the ground. The six o'clock position on the Ferris wheel is level with the 

loading platform. The wheel completes 1 full revolution in 10 minutes. How many 

minutes of the ride are spent higher than 27 meters above the ground? 

17. The sea ice area around the North Pole fluctuates between about 6 million square 

kilometers in September to 14 million square kilometers in March.  Assuming 

sinusoidal fluctuation, during how many months are there less than 9 million square 

kilometers of sea ice? 

18. The sea ice area around the South Pole fluctuates between about 18 million square 

kilometers in September to 3 million square kilometers in March.  Assuming 

sinusoidal fluctuation, during how many months are there more than 15 million 

square kilometers of sea ice? 
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19. A respiratory ailment called “Cheyne-Stokes Respiration” causes the volume per 

breath to increase and decrease in a sinusoidal manner, as a function of time. For one 

particular patient with this condition, a machine begins recording a plot of volume per 

breath versus time (in seconds). Let ( )b t  be a function of time t that tells us the 

volume (in liters) of a breath that starts at time t. During the test, the smallest volume 

per breath is 0.6 liters and this first occurs for a breath that starts 5 seconds into the 

test. The largest volume per breath is 1.8 liters and this first occurs for a breath 

beginning 55 seconds into the test. [UW] 

a. Find a formula for the function ( )b t  whose graph will model the test data for this 

patient. 

b. If the patient begins a breath every 5 seconds, what are the breath volumes during 

the first minute of the test? 

 

20. Suppose the high tide in Seattle occurs at 1:00 a.m. and 1:00 p.m, at which time the 

water is 10 feet above the height of low tide. Low tides occur 6 hours after high tides. 

Suppose there are two high tides and two low tides every day and the height of the 

tide varies sinusoidally. [UW] 

a. Find a formula for the function     ( )y h t  that computes the height of the tide above 

low tide at time t. (In other words, y = 0 corresponds to low tide.) 

b. What is the tide height at 11:00 a.m.? 

 

21. A communications satellite orbits the earth t 

miles above the surface. Assume the radius 

of the earth is 3,960 miles. The satellite can 

only “see” a portion of the earth’s surface, 

bounded by what is called a horizon circle. 

This leads to a two-dimensional cross-

sectional picture we can use to study the size 

of the horizon slice: [UW] 

 

a. Find a formula for α in terms of t. 

b. If t = 30,000 miles, what is α? What 

percentage of the circumference of the 

earth is covered by the satellite? What 

would be the minimum number of such 

satellites required to cover the circumference? 

c. If t = 1,000 miles, what is α? What percentage of the circumference of the earth is 

covered by the satellite? What would be the minimum number of such satellites 

required to cover the circumference? 

d. Suppose you wish to place a satellite into orbit so that 20% of the circumference 

is covered by the satellite. What is the required distance t? 
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22. Tiffany is a model rocket enthusiast. She has been working on a pressurized rocket 

filled with nitrous oxide. According to her design, if the atmospheric pressure exerted 

on the rocket is less than 10 pounds/sq.in., the nitrous oxide chamber inside the rocket 

will explode. Tiff worked from a formula /1014.7 hp e  pounds/sq.in. for the 

atmospheric pressure h miles above sea level. Assume that the rocket is launched at 

an angle of α above level ground at sea level with an initial speed of 1400 feet/sec. 

Also, assume the height (in feet) of the rocket at time t seconds is given by the 

equation    216 1400siny t t t   .      [UW] 

a. At what altitude will the rocket explode? 

b. If the angle of launch is α = 12°, determine the minimum atmospheric pressure 

exerted on the rocket during its flight. Will the rocket explode in midair? 

c. If the angle of launch is α = 82°, determine the minimum atmospheric pressure 

exerted on the rocket during its flight. Will the rocket explode in midair? 

d. Find the largest launch angle α so that the rocket will not explode. 
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