
Complex Numbers:

Definition: A complex number is a number of the form:

z = a+ bi

where a, b are real numbers and i is a symbol with the property:

i2 = −1. You may treat i =
√
−1

We can treat i as a variable in an algebraic expression and all algebraic rules are
still to be followed in operations involving a complex number.

The complex number system is an extension of the real number system. All
real numbers are complex numbers (by having b = 0), but there are complex
numbers that are not real, e.g. 2− 3i.

We add or subtract two complex numbers by adding and substracting the corre-
sponding real and complex part of the number.

E.g.

z = 4 + 3i, w = 1− 2i

z + w = (4 + 1) + (3 +−2)i = 5 + i

z − w = (4− 1) + (3− (−2))i = 3 + 5i

To multiply two complex numbers, we multiply them like we multiply binomials,
with the understanding that i2 = −1
Example:

z = −2 + 5i, w = 4 + 2i

zw = (−2 + 5i)(4 + 2i) = −8− 4i+ 20i+ 10i2 = −8 + 16i+ 10(−1)
= −8 + 16i− 10 = −18 + 16i

To divide a complex number by a real number is to multiply the reciprocal of the
real number to the complex number.

Example:

z = 3− 4i, r = 6,

z

r
=

3− 4i

6
=

1

6
(3− 4i) =

3

6
− 4

6
i =

1

2
− 2

3
i

How about dividing a complex a number by another complex number? In order to
do this, we first need another concept.

Definition: If z = a + bi is a complex number, then z = a − bi is the complex
conjugate of z.



E.g. If z = 4− 5i, then z = 4 + 5i

E.g. If z = 3 + 2i, then z = 3− 2i

E.g. If z = 12i, then z = −12i
E.g. If z = 8, then z = 8

Notice that a real number is its own conjugate.

If z = a+ bi, then z = a− bi, and

z · z = (a+ bi)(a− bi) = a2 − (bi)2 = a2 − b2i2 = a2 − b2(−1) = a2 + b2.

In other words, the product of a complex number z with its complex conjugate z
is always a real number.

To divide two complex numbers, say
z

w
, multiply the numerator and denominator

by the complex conjugate of the denominator. The result will make the denominator
into a real number, and we can divide accordingly.

E.g. Let z = 3− 2i, w = 4 + 3i, find
z

w

Ans: We multiply
z

w
by the fraction

w

w

z

w
=

z

w
· w
w

=
3− 2i

4 + 3i
· 4− 3i

4− 3i
=

(3− 2i)(4− 3i)

(4 + 3i)(4− 3i)
=

12− 9i− 8i+ 6i2

16− 9i2

=
12− 6− 17i

16 + 9
=

6− 17i

25
=

6

25
− 17

25
i

Using complex numbers we can provide solutions to equations like:

x2 + 4 = 0

Notice that this equation has no solution in the real number system, but x = −2i
and x = 2i solve the equation.

In general, for any quadratic equation of the form ax2 + bx + c, where a, b, and c

are real numbers and a 6= 0, we have the two solutions:

x =
−b±

√
b2 − 4ac

2a

If the discriminant, b2 − 4ac, is less than 0, then the equation has two complex
solution

If b2 − 4ac > 0, then the equation has two real solution

If b2 − 4ac = 0, then the equation has one real solution

Example: Solve the equation: 3x2 − x+ 2 = 0



Ans: The solutions are:

x =
1±

√
(−1)2 − 4(3)(2)

2(3)
=

1±
√
−23

6
=

1

6
±
√
23

6
i

Definition: A polynomial of degree n (with real coefficients) is a function
of the form:

p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a2x

2 + a1x+ a0

where an, an−1, an−2 · · · a2, a1, a0 are real numbers, and an 6= 0

The number an is the leading coefficient of the polynomial.

Using long division of polynomials, we can divide a polynomial of higher degree by
a polynomial of lower degree to find the quotient and remainder.

Example: Divide (x4 − 2x3 + 5x2 − 1) by (x2 + x+ 1)

Ans:

x2 − 3x + 7

x2 + x+ 1
)

x4 − 2x3 + 5x2 − 1
− x4 − x3 − x2

− 3x3 + 4x2

3x3 + 3x2 + 3x

7x2 + 3x− 1
− 7x2 − 7x− 7

− 4x− 8

The quotient is (x2 − 3x+ 7) and the remainder is (−4x− 8).

Example: Divide (2x3 − x2 − x+ 2) by (x− 4)

Ans:

2x2 + 7x + 27

x− 4
)

2x3 − x2 − x + 2
− 2x3 + 8x2

7x2 − x
− 7x2 + 28x

27x + 2
− 27x+ 108

110

The quotient is (2x2 + 7x+ 27) and the remainder is (110)

Notice that when the divisor is a linear polynomial (of degree 1), the remainder is
a constant polynomial of degree 0 (a number).



Using this method we can arrive at the:

Division Algorithm:

Suppose P (x), D(x) are polynomials and degree of D(x) is less than or equal to
degree of P (x), then there exist unique polynomials Q(x) and R(x) such that:

P (x) = D(x) ·Q(x) +R(x)

and degree of R(x) is strictly less than degree of D(x).

If R(x) = 0 is the zero polynomial, we say that D(x) is a factor of P (x)

Example: Given P (x) = x5 − 2x4 + 2x2 − x− 1 and D(x) = x2 + x+ 2, we have:

x3 − x2 − 3x + 1

x2 − x+ 2
)

x5 − 2x4 + 2x2 − x− 1
− x5 + x4 − 2x3

− x4 − 2x3 + 2x2

x4 − x3 + 2x2

− 3x3 + 4x2 − x

3x3 − 3x2 + 6x

x2 + 5x− 1
− x2 + x− 2

6x− 3

In other words, Q(x) = x3 − x2 − 3x+ 1 and R(x) = 6x− 3.

Q(x) is the quotient, and R(x) is the remainder, and we can write:

(x5 − 2x4 + 2x2 − x− 1) = (x2 − x+ 2)(x3 − x2 − 3x+ 1) + (6x− 3)

If we divide a polynomial P (x) by a linear factor (x − r), the division algorithm
tells us that there are polynomials Q(x) and R(x) such that

P (x) = (x−r)Q(x)+R(x), where degree of R(x) is less than degree of (x−r). Since
degree of (x− r) is 1, degree of R(x) must be 0. In other words, R(x) is a constant
polynomial. Notice that P (r) = (r − r)Q(r) +R(r) = 0(Q(r)) +R(r) = R(r).

But R(x) is a constant, so P (r) must be the remainder, R(x). We have the:

Remainder Theorem:

When a polynomial P (x) is divided by x− r, the remainder is P (r).

Example: If p(x) = x4 + x3 − x2 − 2x+ 3. Since

p(2) = (2)4 + (2)3 − (2)2 − 2(2) + 3 = 16 + 8− 4− 4 + 3 = 19,

the remainder theorem tells us that when p is divided by x − 2, the remainder is



19. This is indeed the case:

x3 + 3x2 + 5x + 8

x− 2
)

x4 + x3 − x2 − 2x + 3
− x4 + 2x3

3x3 − x2

− 3x3 + 6x2

5x2 − 2x
− 5x2 + 10x

8x + 3
− 8x+ 16

19

Example: If p(x) = 2x5 − 2x4 + x3 − x− 1. Since

p(−1) = 2(−1)5 − 2(−1)4 + (−1)3 − (−1)− 1 = −2− 2− 1 + 1− 1 = −5,
the remainder theorem says that when p(x) is divided by (x− (−1)) = (x+1), the
remainder is −5.

2x4 − 4x3 + 5x2 − 5x + 4

x+ 1
)

2x5 − 2x4 + x3 − x− 1
− 2x5 − 2x4

− 4x4 + x3

4x4 + 4x3

5x3

− 5x3 − 5x2

− 5x2 − x

5x2 + 5x

4x− 1
− 4x− 4

− 5

Factor Theorem:

A real number r is a root (or zero) of a polynomial p(x) if and only if x− r is a
factor of p(x)

Example: Let p(x) = x4 − 3x2 + x− 6. Since p(2) = 0, the factor theorem tells us
that (x − 2) is a factor of p(x). In other words, when p(x) is divided by (x − 2),
the remainder is 0.



x3 + 2x2 + x + 3

x− 2
)

x4 − 3x2 + x− 6
− x4 + 2x3

2x3 − 3x2

− 2x3 + 4x2

x2 + x
− x2 + 2x

3x− 6
− 3x + 6

0

We have: (x4 − 3x2 + x− 6) = (x− 2)(x3 + 2x2 + x+ 3)



Let p(x) be a polynomial, if (x− r)k is a factor of p but (x− r)k+1 is not a factor
of p, then we say that r is a root of p with multiplicity k.

Example: Let p(x) = (x− 2)3(x+ 1)2(x+ 4).

p has three roots, namely 2, −1, and −4. The root 2 has a multiplicity of 3, the
root −1 has a multiplicity of 2, and the root −4 has a multiplicity of 1.

One of the major problem of algebra is finding solution(s) of polynomial equations.
In polynomial equations where the coefficients involve one kind of real numbers,
the solutions may be a (possibly more complicated) different kind of real numbers.

For example:

2x− 1 = 0

The is an equation where the coefficients are integers, but the solution,
1

2
, is not an

integer. We need to involve rational numbers to solve polynomial equations where
the coefficients are only integers.

x2 − 2 = 0

This is an equation where the coefficients are rational numbers, but the solutions,
±
√
2, are not rational numbers. They are irrational numbers. We need to involve

irrational numbers to solve polynomial equations where the coefficients are only
rational numbers.

x2 + 1 = 0

This is an equation where the coefficients are all real numbers, but the solutions, ±i,
are not real numbers, they are complex numbers. We need to involve the complex
numbers to solve polynomial equations involving only real numbers.

For polynomial equations involving complex numbers, we may ask the same ques-
tion. Do we need to involve something beyond the complex number system to solve
polynomial equations involving complex numbers? To answer this question, we
have the following:

Fundamental Theorem of Algebra:

Any polynomial (whose coefficients are real or complex numbers) of degree n has
n complex roots, counting multiplicity.

The significance of the fundamental theorem of algebra is that it tells us that the
complex number system is algebraically closed. In other words, all polyno-
mial equations involving complex numbers as coefficients, the solutions will also be
complex. We do not have to worry about inventing any new kind of numbers to
accomodate the solutions.



Rational Roots Theorem:

Consider the equation:

f(x) = anx
n+an−1x

n−1+an−2x
n−2+ · · · a2x2+a1x+a0 be a polynomial of integer

coefficients (i.e. an, an−1, · · · a2, a1, a0 are all integers), then:

If r =
p

q
is a rational root of f , then p is a factor of a0 and q is a factor of an.

The rational roots theorem gives us a way of looking for the candidates of the
rational roots of a polynomial of integer (and rational) coefficients. For example,

f(x) = 4x3 − 5x2 + 2x− 21

Since the only factors of 4 are±4,±2,±1, and the only factors of−21 are±21,±7,±3,±1,
the only candidates of rational roots of f are:

±21,±21
4
,±21

2
,±7,±7

4
,±7

2
,±3,±3

4
,±3

2
,±1,±1

4
,±1

2
These are the only candidate for rational roots of the polynomial. We only need
to test these numbers for the existance of possible rational roots of f . None of them
has to be a root, however.

Also note that the rational roots theorem gives no information about irrational or
complex roots. A polynomial may still have irrational or complex roots regardless
of what the rational roots theorem says about the existance of rational roots.

We say that a polynomial p (of real coefficient) has a variation in sign if two
consecutive (non-zero) coefficients of p have opposite sign.

Example:

p(x) = 7x4 + 6x2 + x+ 9 has 0 variation in sign

p(x) = −3x3 − 2x2 − 3x− 1 has 0 variation in sign

p(x) = 2x6 − 4x5 − 3x3 − 12 has 1 variation in sign

p(x) = x4 − 2x3 + 5x2 − 2x+ 9 has 4 variations in sign

Decarte’s Rule of Sign Let p(x) be a polynomial of real coefficients, then:

The number of positive real roots of p is equal to the number of variations in
sign of p(x) or less than that by an even number.

The number of negative real roots of p is equal to the number of variations in
sign of p(−x) or less than that by an even number.

Example:

Let p(x) = 2x5 − 3x4 − x3 + x− 1

Since p(x) has 3 variations in sign, Decarte’s rule of sign tells us that p has 3, or 1,
positive real root.



Notice that p(−x) = 2(−x)5−3(−x)4−(−x)3+(−x)−1 = −2x5−3x4+x3−x−1
p(−x) has 2 variations in sign, Decarte’s rule of sign tells us that p has 2, or 0,
negative real root.


