
Area and Tangent Problem

Calculus is motivated by two main problems. The first is the area problem. It
is a well known result that the area of a rectangle with length l and width w is
given by A = wl.

From this fact (or definition) one can readily verifies that the area of a triangle
with base b and height h is A = 1

2bh

The formula for area of triangles can be used to find the area of any polygon.
We just need to divide the polygon into triangles and find the sum of the area of
the triangles.

The problem comes when we want to find the area of a figure with curved edges.
For example, how do we find the area of a circle?

One intuitive idea is to divide the curved figure into rectangles, and estimate the
area of the curved figure by the sum of the area of each rectangle.

This is just an estimate. What can we do to get a more accurate result? Intuition
tells us that if we make the rectangles smaller, the approximation should be bet-



ter. on

Can we get a still better result? Yes, by making the rectangles still smaller. As
we make the rectangles smaller and smaller, the approximation (of the curved
area by the rectangles) become better and better.



Now, what if we want the exact value? To do this, imagine that we make the
width of the rectangles so small that it practically has zero length, then if we are
still able to find the area of the rectangles, this should give us an exact value of
the curved figure. That is, in the limit case (this word will become meaningful in
a while), when the width of the rectangle becomes infinitesimally small, we get
the exact value of the area of the curved figure. One thing to keep in mind, too,
is that when the width of each rectangle becomes extremely small, the number of
rectangles that are used to approximate the figure must necessarily increase. In



fact, if the width of the rectangles is to become infinitesimally small, we should
expect that we will need to use infinitely many rectangles to fill the curved figure.

Another problem of calculus is the tangent problem. We have a curve defined
by a function f(x), and we want to find the slope of the line tangent to f at a
given point (x0, f(x0)) where x0 is a constant. Intuitively, the line tangent to
a curve at a given point is the line that best approximates the curve at that
given point.

From algebra we know that in order to find the slope of a line, we need two points.
We have only one point, namely (x0, f(x0)). We can try to approximate the
slope of the line by choosing another point on the curve that is near the point in
question, say (x0 + h, f(x0 + h)), where h is a small number.

The slope of the line (called the secant line) that contains these two points
(x0, f(x0)) and (x0 + h, f(x0 + h)) is given by:



slope of secant line = msec =
f(x0 + h)− f(x0)

(x0 + h)− x0
=
f(x0 + h)− f(x0)

h

The above formula gives an approximation of the slope of the tangent line.
Intuitively, if we make the two points P and Q closer to each other, we get a
better approximation. Making P and Q closer is the same as making h smaller,
or close to zero.

At the limit case, when h is arbitrarily close to 0, or when h is infinitesimally
small, we should expect the approximation to be exact.

What does the slope of the tangent to a function represent?

Suppose you are going on a one-direction, 10 hours trip. Let the x-axis represent
the time (in hours) since you have started your trip, and the y-axis represent the
distance (in miles) you are from your origin.

What does the slope of the line between (2, 4) and (10, 100) represent?

The slope of the secant line, m =
100− 4

10− 2
= 12 represents the average velocity

of your car between time t = 2 and t = 10. That is, on average, you are driving
at 12 miles per hour between the 2nd hour to the 10th hour of your travel. In
general, if we want to find the average velocity of the car between any two times

t1 and t2, we just need to find the slope m =
d2 − d1
t2 − t1

. But what if we want to

find the velocity of your car at exactly t = 2? This is called the instantaneous
velociy of the car at t = 2 and is what the slope of the tangent line represents.

In general, the slope between any two points of a function represents the average



rate of change of the function between the two given points, while the slope
of the tangent line of a function at a given point represents the instantaneous
rate of change of the function at that given point.

Limits

In both the area problem and the tangent problem, a very important concept
is common between the two. In the case with the area, we have to take the
width of the rectangles very close to zero; in the case of the tangent problem,
we also have to take h very close to 0. Both of these give rise to the concept of
limit. What do we mean when we say the value of one variable is close to a
particular number? What is the behavior of a function f(x) when x approaches
a particular number?

(Informal) definition of Limit:

Let f be a function and a and L constants, We say

lim
x→a

f(x) = L

if f(x) can be made arbitrarily close to L by choosing x close to a. (We use the
notation x→ a to mean x approaches a)

Example: What is
lim
x→2

x+ 1 =?

That is, what does the value of the expression x+ 1 get close to when x is close
to 2?

We may try a few values of x that are close to 2 and see if we observe any trend
here:

x x+ 1

2.1 3.1

2.05 3.05

2.01 3.01

2.001 3.001

1.9 2.9

1.95 2.95

1.99 2.99

1.999 2.999

From the table, we can see that the value of the expression x+ 1 approaches 3
as x approaches 2. It should not surprise you to find that



lim
x→2

x+ 1 = 3

Note that we could have found the value of the limit by directly substituting the
value of 2 into the expression x+ 1 to find the value of 3. Occasionally, directly
substituting the limiting value into the expression may allow us to find the value
of the limit (and we will see under what cercumstances we may do this), but
there are cases such method will fail and we need more sophisticated methods.
Consider:

lim
x→3

x2 − 9

x− 3

If we substitute the value of 3 into the expression
x2 − 9

x− 3
we get the indetermi-

nate form
0

0
. Let us try some values again:

x
x2 − 9

x− 3
3.1 6.1

3.05 6.05

3.01 6.01

3.001 6.001

2.9 5.9

2.95 5.95

2.99 5.99

2.999 5.999

It seems that as x approaches 3,
x2 − 9

x− 3
approaches 6, so we would guess that

lim
x→3

x2 − 9

x− 3
= 6

This is a correct guess. Notice that in order to evaluate the limit of the function
at a point a, we do not need to require the function to be defined at a. In the

above example, the expression
x2 − 9

x− 3
is not defined at 3, yet its limit is defined

at 3.

Let’s look at another example:

lim
x→1

|x− 1|
x− 1

=?



Notice that if x = 1, the expression gives the
0

0
indeterminate form, so we try

some values as before:

x
|x− 1|
x− 1

1.1 1

1.05 1

1.01 1

1.001 1

0.9 −1

0.95 −1

0.99 −1

0.999 −1

So what is the limit? Is it 1 or −1?

Since we cannot find a ”trend”, i.e., since the value of the expression |x−1|
x−1 does

not tend to any particular value, we cannot come to any conclusion as to what

the value of the expression should be, we say that the limit lim
x→1

|x− 1|
x− 1

does not

exist

The previous example illustrates that limits do not have to exist. In the above
example, the value of the expression tends to one value (−1) when x approaches
1 but x is always less than 1 (from the left hand side), and the expression tends
to another value (1) when x approaches 1 but x is always greater than 1 (from
the right hand side). Since the two values do not agree, we cannot make a proper
guess, so the limit does not exist.

Trying to find the limit by finding values of f(x) on the left and right hand side
of a gives rise to the concept of left and right-handed limits:

Definition:

We say that
lim
x→a−

f(x) = L

if f(x) can be made arbitrarily close to L by choosing x close to a and is always
less than a (x is on the left hand side of a). The limit lim

x→a−
f(x) = L is called

the left-handed limit of f(x) as x approaches a.

We similarily define the right-handed limit of f(x):

We say that
lim
x→a+

f(x) = L

if f(x) can be made arbitrarily close to L by choosing x close to a and is always
greater than a (x is on the right hand side of a).



Notice that while a function may not have a limit, it may have a left and/or a

right-handed limit. In the previous example, lim
x→1

|x− 1|
x− 1

does not exist, but the

left lim
x→1−

|x− 1|
x− 1

= −1 and right-handed limit lim
x→1+

|x− 1|
x− 1

= 1 both exist.

What is the relationship between the limit (sometimes called a two-sided limit)
of a function and its left and right-handed limits?

Theorem:

a function has a limit if and only if it has a right and left-handed limit
and they are equal to each other.

E.g.

lim
x→1−

x2 + 2x− 3

x− 1
= 4

and

lim
x→1+

x2 + 2x− 3

x− 1
= 4

so

lim
x→1

x2 + 2x− 3

x− 1
= 4



E.g.

lim
x→0−

|x|
x

= −1

but

lim
x→0+

|x|
x

= 1

so lim
x→0

|x|
x

does not exist.



It is important to note that even the left and/or right-handed limit of a function
need not exist.

Consider the limit:

lim
x→0

sin

(
1

x

)
This limit does not exist and neither does the left or right-handed limit. The
value of the function osculates between −1 and 1 as x approaches 0.



Infinite limit:

Consider the limit:

lim
x→0

1

x2

Let’s try some values of x close to 0.

x
1

x2
±1 1

±0.5 4

±0.2 25

±0.1 100

±0.05 400

±0.01 10,000

±0.001 1,000,000

We see that the closer x is to 0 (from both sides), the larger the value of the
expression, but it never tends to any particular value.

In this example, we use the notation

lim
x→0

1

x2
=∞



to mean that, as x approaches 0, the value of
1

x2
increases without bound.

In general, we say
lim
x→a

f(x) =∞

if the value of f increases without bound as x approaches a.

It is important to point out that ∞ is not a number, so when we say that
lim
x→a

f(x) =∞ we are not suggesting that the limit of the function exists at point

a. We are simply using the notation to mean that the value of f increases without
bound, we are not saying that the limit exists.

Similarily, we define
lim
x→a

f(x) = −∞

to mean that the value of f decreases without bound (f goes to negative infinity)
as x approaches a.

Note that we may use the infinity symbol for the limit only if the value of the
function increases without bound as x approaches a from both sides of a. Con-
sider:

lim
x→0

1

x
In this case,

lim
x→0−

1

x
= −∞

but

lim
x→0+

1

x
=∞

so the limit lim
x→0

1

x
simply does not exist, and we may not say the limit is ∞ or

−∞.

In the case when lim
x→a

f(x) =∞ or lim
x→a

f(x) = −∞, we say that the line x = a is

a vertical asymptote of f .

Example:



For the function f with the above graph,

f(−3) = 1 lim
x→−3−

f(x) = 1 lim
x→−3+

f(x) = 3 lim
x→−3

f(x) does not exist

f(−1) ≈ 0.2 lim
x→−1−

f(x) = 3 lim
x→−1+

f(x) ≈ 0.2 lim
x→−1

f(x) does not exist

f(0) is undefined. lim
x→0−

f(x) does not exist lim
x→0+

f(x) does not exist

lim
x→0

f(x) does not exist

f(1) ≈ 1.8 lim
x→1−

f(x) ≈ 1.8 lim
x→1+

f(x) =∞ lim
x→1

f(x) does not exist

f(3) is undefined. lim
x→3−

f(x) ≈ 0.5 lim
x→3+

f(x) ≈ 1.5 lim
x→3

f(x) does not

exist

f(4) = 3 lim
x→4−

f(x) = 1 lim
x→4+

f(x) = 1 lim
x→4

f(x) = 1

Algebraically evaluate limits:

Rules of limit: Let c be a constant and that

lim
x→a

f(x) and lim
x→a

g(x)

both exist, then:

lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

i.e. limit of the sum = sum of the limits

lim
x→a

[f(x)− g(x)] = lim
x→a

f(x)− lim
x→a

g(x)



i.e. limit of the difference = difference of the limits

lim
x→a

[cf(x)] = c lim
x→a

f(x)

i.e. limit of a constant times a function = constant times the limit of the function

lim
x→a

[f(x)g(x)] = lim
x→a

f(x) · lim
x→a

g(x)

i.e. limit of the product = product of the limits

lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
provided that lim

x→a
g(x) 6= 0

i.e. limit of the quotient = quotient of the limits

if n is a positive integer, then

lim
x→a

[f(x)]n = [lim
x→a

f(x)]n

i.e. limit of power = power of limit

lim
x→a

c = c

i.e. limit of a constant is itself

if f(x) is a polynomial, then

lim
x→a

[f(x)] = f(a)

if n is any positive integer,

lim
x→a

n
√
f(x) = n

√
lim
x→a

f(x)

We also introduce two limits that would be useful later on. We cannot (easily)
prove these two limits at this point, we’ll just accept it for the moment:

lim
x→0

sinx

x
= 1

lim
x→0

1− cosx

x
= 0

Some examples on how to evaluate limits:

Evaluate

lim
x→−1

x2 + 8x+ 7

x+ 1

To solve this problem, notice that if we just plug in the value of x = −1 into
the expression, we get the indeterminate form 0

0 . We could try what we did



before, which is to use various values of x close to −1, and try to see if there’s
a tendency. However, as we mentioned that method is tedious and also may not
be accurate. We do some algebra instead:

Factoring the numerator we have:

lim
x→−1

x2 + 8x+ 7

x+ 1
= lim

x→−1

(x+ 7)(x+ 1)

x+ 1

If we know that the two limits lim
x→−1

x+ 7 and lim
x→−1

x+ 1

x+ 1
exist, then we may use

the limit rules to say that

lim
x→−1

(x+ 7)(x+ 1)

x+ 1
= lim

x→−1
x+ 7 · lim

x→−1

x+ 1

x+ 1

but we know that
lim
x→−1

x+ 7 = 6

and

lim
x→−1

x+ 1

x+ 1
= 1

so

lim
x→−1

(x+ 7)(x+ 1)

x+ 1
= lim

x→−1
x+ 7 · lim

x→−1

x+ 1

x+ 1
= 6 · 1 = 6

Why is lim
x→−1

x+ 1

x+ 1
= 1? If we just plug in the value of −1 into the expression x+1

x+1 ,

we get the indeterminate 0
0 form. However, the definition of limit tells us that,

in order to evaluate the value of the limit, we only need to know the behavior
of the expression for x close to −1, not when x = −1. Hence, even though the
expression is undefined at x = −1, but since x+1

x+1 = 1 for all values of x 6= −1, we
have

lim
x→−1

x+ 1

x+ 1
= lim

x→−1
1 = 1

We could actually have solved the problem a little more cleanly:

lim
x→−1

x2 + 8x+ 7

x+ 1
= lim

x→−1

(x+ 7)(x+ 1)

x+ 1
= lim

x→−1
x+ 7 = −1 + 7 = 6

Example:

lim
x→0

√
1 + x− 1

x
=?

If we just plug in the value of x = 0 into the expression we get the indeterminate
form 0

0 again. So we will need to do a little more work. The trick for this one is



to multiply by the conjugate of the numerator:

lim
x→0

√
1 + x− 1

x
= lim

x→0

(
√

1 + x− 1)(
√

1 + x+ 1)

x(
√

1 + x+ 1)

= lim
x→0

1 + x− 1

x(
√

1 + x+ 1)
= lim

x→0

x

x(
√

1 + x+ 1)
= lim

x→0

1√
1 + x+ 1

The reason we are able to cancel the x on the numerator and denominator is
same as before. Since we are finding the limit as x → 0, x does not need to be
equal to 0, hence we can cancel the common factor of x in the fraction.

At this point, even if we plug in x = 0, the expression is defined:

lim
x→0

1√
1 + x+ 1

=
1√

1 + 0 + 1
=

1

2

These two examples show that when evaluating limits, upon encountering the
indeterminate form 0

0 we must try to change the expression so that we can have
an expression that is defined.

Example:

lim
x→2

x− 2

x2 − 4x+ 4

Once again if we plug in x = 2, we have 0
0 , so we try some algebra:

lim
x→2

x− 2

x2 − 4x+ 4
= lim

x→2

x− 2

(x− 2)(x− 2)
= lim

x→2

1

x− 2

The limit

lim
x→2

1

x− 2

is undefined since limx→2−
1

x−2 = −∞ and limx→2+
1

x−2 = +∞

Example:

lim
x→−3

x+ 3

|x+ 3|
=?

To evaluate this limit, we need to understand how the absolute value function
behaves. Remember that

|x| =
{

x if x ≥ 0
−x if x < 0

For the above expression, x+ 3 < 0 if x < −3, and x+ 3 ≥ 0 if x ≥ −3, so

lim
x→−3−

x+ 3

|x+ 3|
= lim

x→−3−
x+ 3

−(x+ 3)
= lim

x→−3−
−1 = −1



while

lim
x→−3+

x+ 3

|x+ 3|
= lim

x→−3+
x+ 3

x+ 3
= lim

x→−3+
1 = 1

Since the right-handed limit and left-handed limit do not agree,

lim
x→−3

x+ 3

|x+ 3|
does not exist.

Summary of limit evaluation:

If the value of the expression is defined when directly substitute the value, and
the function is not conditionally defined, just plug in the value. E.g.

lim
x→1

x− 3

x+ 1
=

1− 3

1 + 1
=
−2

2
= −1

If the function is conditionally defined, evaluate the left- and right-handed limits
and see if they are equal.

E.g.

Let

f(x) =

{
x2 − 1 if x ≥ 2

4x if x < 2

Evaluate lim
x→2

f(x)

Since
lim
x→2−

f(x) = lim
x→2−

4x = 4(2) = 8

but
lim
x→2+

f(x) = lim
x→2+

x2 − 1 = 22 − 1 = 3

The left and right-handed limits are not equal, so lim
x→2

f(x) does not exist



If the expression is in the form f(x)
g(x) , and upon substitute the limiting value a, if

f(a) 6= 0 but g(a) = 0, then the limit does not exist. E.g.

lim
x→1

x2 + 2 + 5

x2 + 3x− 4

Since the denominator = 0 but the numerator 6= 0 when x = 1, the limit does
not exist.

If the expression is the indeterminate form 0
0 when we substitute a into the

expression, more work needs to be done. E.g.

lim
x→2

x− 2

x2 + 3x− 10

Note that the limit may or may not exist for the indeterminate case 0
0 . Even if

the limit exists, it may take more than just simple algebra to find the limit or
show that it does not exist. Consider for example:

lim
x→0

sinx

x

This limit exists and is equal to 1, but there’s no simple algebraic method that
we may use to find the limit.



Squeeze Theorem (Sandwich Lemma)

Let a be a constant, Suppose there is an open interval containing a such that
f(x) ≤ g(x) ≤ h(x) for all x inside that open interval, and further more

lim
x→a

f(x) = lim
x→a

h(x) = L

then
lim
x→a

g(x) = L

What the Squeeze theorem says is that, if a function g(x) is (locally) squeezed
between two other functions f(x), h(x), and the two functions f(x), h(x) both
go to L when x approaches a, then g must also approach L as x approaches a

Formal Definition of Limit

So far we have used the concept of limit rather casually. We say that limx→a f(x) =
L if f(x) is close to L when x approaches a. While these terms suffices for an
intuitive understanding of limits, they are too vague and inexact to be used in



formal mathematics. What do you mean by x approaching a number? How
close is close? We must make these concepts precise if we want to prove that
limx→1 x+ 1 = 2. After all, how can you say that when x→ 1, x+ 1 approaches
2? Why can’t I say that limx→1 x + 1 = 2.001? It seems to me that as x → 1,
x+ 1 is very close to 2.001 too.

Formal Definition of Limit: We say that

lim
x→a

f(x) = L

if for every ε > 0 there exists a δ > 0 such that

|f(x)− L| < ε whenever |x− a| < δ

What the definition says is that, regardless of how close (as close as ε) you want
f(x) to L, I can always ”beat” you when I choose x close enough to a (as close
as δ). As long as the difference between x and a is less than δ (|x− a| < δ), then
the difference between f(x) and L will be less than ε (|f(x)− L| < ε).

Example: Prove that
lim
x→2

x2 = 4

To prove such a statement, we must use the formal limit definition. It is not
enough just to try some x close to 2 and say that the result x2 is close to 4.
What you need to prove is this: How close do you want? You want x2 and 4 to
be so close that their difference is less than ε, so you want |x2 − 4| < ε. That
is, you get to choose however small you want ε to be, as long as ε is greater
than 0. I must now choose δ so that, as long as x is within δ distance of 2, that
is, as long as |x − 2| < δ, then I will have |x2 − 4| < ε. The choice for δ is
not unique. As long as you find a δ that works, that will be fine. In this case
here, let’s have δ = min{1, ε

10}. If 0 < |x − 2| < δ, then since δ ≤ 1, we have



|x − 2| < δ ≤ 1 ⇒ |x − 2| < 1 ⇒ |x| < 3 ⇒ |x + 2| < 5. Since we also have
|x− 2| < ε

10 , together we have:

|x2 − 4| = |(x− 2)(x+ 2)| = |x− 2||x+ 2| < ε

10
· 5 < ε

2
< ε

Notice that a different choice of δ may also have worked. We are not required to
find all δ that works, just one.

Formal definition of infinite Limit: We say

lim
x→a

f(x) =∞

if for every M > 0 there exists a δ > 0 such that f(x) > M whenever |x−a| < δ.

The idea behind the infinite limit definition is the same as that of a finite limit.
We are able to say that f(x) approaches infinity if f(x) grows without bound.
What does it mean to grow without bound? If whatever the bound you provide
(M) I can always beat you (f(x) > M) then that means f(x) grows without
bound.

Limits at Infinity

So far we have studied the limit of a function f only at a particular number c.
What if we want to study the long term behavior of a function f? That if, what
can we tell about a function f(x) when the values of x become tremendously
large (x→∞) or tremendously negative (x→ −∞)?

Let’s look at the behavior of the function

f(x) =
x− 1

x+ 1

when x becomes very large:

x f(x)

1000 0.998

10000 0.9998

100000 0.99998

1000000 0.999998

10000000 0.9999998

As we can see, the value of f approaches 1 as the value of x gets larger and larger.
We use the notation:

lim
x→∞

x− 1

x+ 1
= 1

to denote this fact.



The meaning of the limit says that, the value of f approaches 1 as x approaches
infinity. As we already said, infinity is not a number. So when we say x ap-
proaches infinity, we are not saying that x approaches any particular number.
When we say x approaches infinity, we are saying that the value of x increases
without bound.

What happens to the function f if x approaches negative infinity? That is, what
happens when the values of x decreases without bound? We make a similar table
like the one above:

x f(x)

−1000 1.002

−10000 1.0002

−100000 1.00002

−1000000 1.000002

−10000000 1.0000002

So f approaches 1 as x decreases without bound. We use the notation:

lim
x→−∞

x− 1

x+ 1
= 1

to denote this fact.

Once again, when we say x approaches negative infinity, we mean x decreases
without bound. We are not suggesting that x approaches any particular number.



Definition:

We use the notation
lim
x→∞

f(x) = L

to mean that, when the value of x grows without bound, the value of f(x) ap-
proaches the number L.

We use similar notation for negative infinity:

lim
x→−∞

f(x) = L

to mean that, when the value of x decreases without bound, the value of f(x)
approaches the number L.

If the value of f approaches a particular number L when x approaches infinity
(or negative infinity), the graph of f looks like a horizontal line at the tail end
(when x is extremely large or extremely negative).

Definition:

The horizontal line y = L is called a horizontal asymptote of f if

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L

The function we just considered, f(x) =
x− 1

x+ 1
, has a horizontal asymptote y = 1.

If a function has a horizontal asymptote y = L, that means f behaves pretty
much like the constant function of y = L at large values of x.

How do we find the limit of a function at infinity? Let us see some simple cases:

lim
x→∞

1

x

As x gets tremendously large, we are dividing 1 by a tremendously large number,
the result is a number very close to zero.

lim
x→∞

1

x
= 0

In general, whenever we have a constant divided by an expression that keeps on
growing to infinity, then the result is always zero. We state a slightly simpler
version here:

If r > 0 and c is a constant then

lim
x→∞

c

xr
= 0

This makes sense because, since r >, as x approaches infinity, xr approaches
infinity, and when you divide a constant by something that is tremendously large,
the result is a number that is very close to 0.



If r > 0, and r is a rational number, and c is a constant then

lim
x→∞

c

xr
= 0

if xr is defined for negative numbers x

E.g

Evaluate

lim
x→∞

x3 − 4x2 + x− 1

−2x3 + x+ 5

In this case here, both the numerator and the denominator goes to infinity as x
grows without bound. In order to evaluate this limit formally, we need to express
the fraction in terms that we can evaluate the value when x approaches infinity.
The trick here is to divide the numerator and denominator by the highest power
of x. In this example here, we divide the numerator and denominator by x3:

lim
x→∞

x3 − 4x2 + x− 1

−2x3 + x+ 5

= lim
x→∞

x3−4x2+x−1
x3

−2x3+x+5
x3

= lim
x→∞

1− 4
x + 1

x2 −
1
x3

−2 + 1
x2 + 5

x3

As x→∞, all the expressions that have a constant on the numerator and x to a
power in the denominator will become 0, and this allows us to evaluate the limit:

= lim
x→∞

1− 4
x + 1

x2 −
1
x3

−2 + 1
x2 + 5

x3

=

lim
x→∞

(
1− 4

x
+

1

x2
− 1

x3

)
lim
x→∞

(
−2 +

1

x2
+

5

x3

)

=
lim
x→∞

1− lim
x→∞

4

x
+ lim

x→∞

1

x2
− lim

x→∞

1

x3

lim
x→∞
−2 + lim

x→∞

1

x2
+ lim

x→∞

5

x3

=
1− 0 + 0− 0

−2 + 0 + 0

= −1

2



There is a easier, though less formal method to solve a limit problem of this
sort. Notice that in the above limit, both the numerator and denominator are
polynomials. We can argue that when x becomes tremendously large, the highest
power of x in the polynomial will dominate. Consider the polynomial f(x) =
x3 − 4x2 + x− 1. When the value of x becomes tremendously large, the x3 term
is going to be much larger than the −4x2 term and the x term. i.e,

x3 − 4x2 + x− 1 ≈ x3 as x→∞

Similarly, as x becomes tremendously large,

−2x3 + x+ 5 ≈ −2x3 as x→∞

Therefore, the limit:

lim
x→∞

x3 − 4x2 + x− 1

−2x3 + x+ 5

may be evaluated like this:

lim
x→∞

x3 − 4x2 + x− 1

−2x3 + x+ 5
= lim

x→∞

x3

−2x3
= lim

x→∞

1

−2
= −1

2



It is important to note that the above argument works for polynomials (and
power functions in general) only if x approaches infinity or negative infinity. If
we are to evaluate

lim
x→5

x3 − 4x2 + x− 1

−2x3 + x+ 5

then the previous argument does not work, since x does not approach infinity, so
we may not ignore the other terms.

E.g.

Evaluate

lim
x→−∞

√
x2 + 1

x− 1

To evaluate this formally, we divide by the highest power of x. In this case here,
the highest power of the denominator is x. How about the numerator? Since we
are taking the radical of x2, the highest power of x in the numerator is also x.
(This is generally true. If we have

√
x4 + 3x+ 1, then the highest power of x is

x2 since we are taking the square root of x4. If we have 3
√
x7 − 4x3 + 3 then the

highest power of x is x7/3.)

lim
x→−∞

√
x2 + 1

x− 1

= lim
x→−∞

√
x2 + 1

x
x− 1

x

= lim
x→−∞

√
x2 + 1

−
√
x2

x− 1

x

Why does the x turned into −
√
x2? The reason is that we are taking the limit as

x goes to negative infinity. As x approaches negative infinity, x is a negative
number. If we just turn x into

√
x2, then this would have turned x into a positive

number since
√
x2 is a positive number for any value of x. Therefore, we must

put the negative sign in front of the expression if we were to take the limit as x
goes to negative infinity.

lim
x→−∞

√
x2 + 1

−
√
x2

x− 1

x



= lim
x→−∞

−
√
x2 + 1

x2

x

x
− 1

x

=
lim

x→−∞
−
√

1 +
1

x2

lim
x→−∞

1− 1

x

=
−
√

lim
x→−∞

1 + lim
x→−∞

1

x2

lim
x→−∞

1− lim
x→−∞

1

x

=
−
√

1 + 0

1− 0
= −1

We could have solved the problem more easily by arguing that, as x approaches
−∞, the highest power of x is going to dominate, so

√
x2 + 1 ≈

√
x2 and x−1 ≈ x

when x is very negatively large. We have



lim
x→−∞

√
x2 + 1

x− 1

= lim
x→−∞

√
x2

x

= lim
x→−∞

|x|
x

Since x goes to negative infinity, the numerator will be positive while the
denominator will be negative, so their ratio will be −1:

lim
x→−∞

|x|
x

= −1

E.g. Evaluate the limit:

lim
x→∞

x3 − 3x2 + 1

x2 − 1

We divide by the highest power of x, which is x3.

lim
x→∞

x3 − 3x2 + 1

x2 − 1

= lim
x→∞

x3 − 3x2 + 1

x3

x2 − 1

x3

=
lim
x→∞

x3 − 3x2 + 1

x3

lim
x→∞

x2 − 1

x3

=

lim
x→∞

(
1− 3

x
+

1

x3

)
lim
x→∞

(
1

x
− 1

x3

)

=
lim
x→∞

1− lim
x→∞

3

x
+ lim

x→∞

1

x3

lim
x→∞

1

x
− lim

x→∞

1

x3

=
1− 0 + 0

0 + 0
=

1

0



We have division by zero, which is undefined. So

lim
x→∞

x3 − 3x2 + 1

x2 − 1
does not exist

What happens here is that, since the degree of numerator is higher than the degree
of the denominator, the numerator increases much faster than the denominator
as x goes to infinity, so the result is a tremendously large number.

Sometimes we use the notation

lim
x→∞

f(x) =∞

to mean that as x increases without bound, the value of f(x) also increases
without bound. Once again remember that infinity is not a number, so this
notation is not saying that the limit exists. It is simply a notation used to denote
the behavior of the function f as x increases without bound.

Some general rules about limits at infinity of a rational function:

If p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a2x

2 + a1x+ a0 and q(x) = bmx
m +

bm−1x
m−1 + bm−2x

m−2 + · · ·+ b2x
2 + b1x+ b0 are two polynomials of degree n and

m, respectively. Then



lim
x→∞

p(x)

q(x)
= 0 if n < m

lim
x→∞

p(x)

q(x)
=
an
bm

if n = m

lim
x→∞

p(x)

q(x)
does not exist if n > m

This is true because, if the numerator has a lower degree than the denominator,
then as x increases without bound, the denominator increases much faster than
the numerator, so the fraction approaches 0.

If the numerator and the denominator has the same degree, then they increase
at about the same rate, and the limit will be doniminated by the highest power
of x, which in this case is xn (or xm), and the result is

lim
x→∞

p(x)

q(x)
= lim

x→∞

anx
n

bmxm
=
an
bm

If the numerator has a higher degree than the denominator, the numerator will
increase faster than the denominator as x goes to ∞, and the whole fraction will
grow without bound.

E.g. Evaluate

lim
x→∞

sinx

x

We cannot evaluate this limit directly. However, notice that −1 ≤ sinx ≤ 1, so

lim
x→∞
−1

x
≤ lim

x→∞

sinx

x
≤ lim

x→∞

1

x

Since both limits lim
x→∞
−1

x
and lim

x→∞

1

x
are 0, using the squeeze theorem, we know

that

lim
x→∞

sinx

x
= 0

By definition, f(x) =
sinx

x
has a horizontal asymptote y = 0. Notice that

the graph of f intercepts its horizontal asymptote many many times (in fact,



infinitely many times). This should clarify a misconception that the graph of a
function does not intercept its horizontal asymptote.

Slant Asymptote

For the function

f(x) =
x2

x+ 1

the degree of the numerator is greater than the degree of the denominator, so we
know that

lim
x→∞

x2

x+ 1
does not exist

However, if we perform the long division and express f as:

f(x) =
x2

x+ 1
= x− 1 +

1

x+ 1

Then we see that, as x→∞, the fraction
1

x+ 1
approaches 0. This means that

the expression x − 1 +
1

x+ 1
approaches x − 1 as x → ∞. What this means is

that, as x→∞, f(x) behaves very much like the line y = x− 1. i.e

x2

x+ 1
≈ x− 1 as x→∞



Since f approaches the line y = x− 1 as x→∞, we say that the line y = x− 1
is a slant asymptote of f . The line is not a horizontal line. Instead it is a line
with a slope, and that’s why the name slant

In general, a rational function will have a slant asymptote if the degree of the
numerator is one greater than the degree of the denominator. In order to find the
slant asymptote, we perform the long division to find the quotient. The quotient
will be a line and that is the slant asymptote.

E.g. Find the slant asymptote of f(x) =
x3 − 3x2 + x+ 4

x2 + 2x− 4
.

Performing the long division we see that

x3 − 3x2 + x+ 4

x2 + 2x− 4
= x− 5 +

15x− 15

x2 + 2x− 4

Therefore, the slant asymptote for f is y = x− 5



E.g. Find the slant asymptote of f(x) =
x2 + 2x

x2 + 1
.

Since the degree of the numerator is equal to the degree of the denominator, f
has no slant asymptote. f , though, has a horizontal asymptote of y = 1.



Continuous Functions

We have seen that for some functions, we can find its limit at some points by
simply substitute the value. What type of functions can we do that? And what
are their special properties? It turns out that the functions that we can find their
limit by just substitution are very useful and exhibit very regular behavior that
they deserve special attention.

Definition: Let a be a real number and f(x) a function. We say that f is
continuous at a if

lim
x→a

f(x) = f(a)

A function is said to be continuous if it is continuous at every point in its
domain. A function that is not continuous is said to be discontinuous.

What the definition says is that a function is continuous at a point a if three
things happen, 1, if f(a) is defined, 2, if the limit of the function exists at a, and
3, the limit is equal to the value of the function.

You may think of the limit of a function at a point a as what we believe the value
of the function should be, according to what we have seen from the behavior of



the function near a. So when we say lim
x→−1

x2 + 2x+ 1

x+ 1
= 0, we are saying that the

value of the expression
x2 + 2x+ 1

x+ 1
should be 0 when x is equal to −1, according

to what we have seen from values of the function near 0.

The value of the function, f(a), is the reality. i.e. f(a) is really what happens to
f at a. f(a) may be undefined, it may be equal to a value that differs from the
limit. If the reality, i.e. f(a), is equal to what we think should be, i.e. lim

x→a
f(x),

then we say the function is continuous.

Example:

f(x) = x+ 3

f is continuous at x = 1 since the limit lim
x→1

x+ 3 = 4 and function f(1) = 4 are

both equal to 4.

E.g.

f(x) =

{
x2+x−6
x−2 if x 6= 2

3 if x = 2

f is discontinuous at x = 2 because the limit lim
x→2

f(x) = 5 is not equal to the

value of the function, f(2) = 3.



E.g.

f(x) =
sinx

x

f is discontinuous at 0 because f is undefined at 0. lim
x→0

sinx

x
exists, but f is not

defined at 0, therefore it is discontinuous at 0.

E.g.

f(x) =

{
x2 + 1 if x < 3
x+ 2 if x ≥ 3

f is discontinuous because even though f(3) = 5 is defined, lim
x→3

f(x) does not

exist.



Example:

f(x) =
x+ 1

x− 1

f is discontinuous at x = 1 because f is undefined at 1 and lim
x→1

x+ 1

x− 1
does not

exist either.



By definition, continuity is stronger than having a limit. This means that, if a
function f is continuous at a, then f must have a limit at a (in fact, its limit at
a must be equal to f(a).

As some of the previous examples showed, a function having a limit at a does
not necessarily have to be continuous at a.

Definition:

If f is discontinuous at a, if f has a limit at a, then we say that x = a is a
removable discontinuity of f . If f does not have a limit at a, then x = a is a
non-removable discontinuity of f .

Graphically, the graph of a function with a removable discontinuity at a has a
hole at a, but no jump. We can remove the point of discontinuity by simply
define the value of the function at a to be equal to its limit.

The graph of a function with a non-removable discontinuity at a necessarily has
a jump or a vertical asymptote, or some kind of oscillating behavior that causes
the function of jump around in values near a.

The graph of a continuous function does not have any holes or jumps.

Example:



f(x) =
sinx

x

f is discontinuous at x = 0 since f(0) is undefined.

lim
x→0

sinx

x
= 1

Since f has a limit at 0, this discontinuity is removable. We can remove the point
of discontinuity (the hole) by redefining f to be:

f(x) =

{ sinx

x
if x 6= 0

1 if x = 0

Example:

f(x) = sin

(
1

x

)
Limit of f at x = 0 does not exist, f has a non-removable discontinuity at x = 0.
It does not matter how we define the value f at 0, f still will not be continuous
at that point.

E.g.



For the function f with the above graph,

f(−3) = 1 lim
x→−3−

f(x) = 1 lim
x→−3+

f(x) = 3 lim
x→−3

f(x) does not exist

f has a non-removable discontinuity at x = −3

f(−1) ≈ 0.2 lim
x→−1−

f(x) = 3 lim
x→−1+

f(x) ≈ 0.2 lim
x→−1

f(x) does not exist

f has a non-removable discontinuity at x = −1

f(0) is undefined. lim
x→0−

f(x) does not exist lim
x→0+

f(x) does not exist

lim
x→0

f(x) does not exist

f has a non-removable discontinuity at x = 0

f(1) is undefined. lim
x→1−

f(x) = 2 lim
x→1+

f(x) =∞ lim
x→1

f(x) does not exist

f has a non-removable discontinuity at x = 1

f(3) is undefined. lim
x→3−

f(x) ≈ 0.5 lim
x→3+

f(x) ≈ 1.5 lim
x→3

f(x) does not

exist

f has a non-removable discontinuity at x = 3

f(4) = 3 lim
x→4−

f(x) = 1 lim
x→4+

f(x) = 1 lim
x→4

f(x) = 1

f has a removable discontinuity at x = 4

The following functions are continuous functions in their respective domain:

Polynomials, rational functions, exponential functions, logarithmic functions,
trigonometric functions, root functions.

Theorem: If f and g are continuous at a then the following functions are contin-



uous at a:

f + g f − g fg
f

g
provided that g(a) 6= 0

In other words, sum, difference, product, and quotient of continuous functions
are continuous.

Theorem: If f is continuous at b and limx→a g(x) = b, then limx→a f(g(x)) = f(b).
In other words,

lim
x→a

f(g(x)) = f(lim
x→a

g(x))

What this theorem says is that if a function is continuous at a point a, and that
the limit exists for another function g at a, then we can interchange the limit and
function symbol. This theorem will be useful when you get to the part where
L’Hospital’s rule is needed.

The above theorem gives us the following:

If f is continuous at a and g is continuous at f(a), then g(f) is continuous at a
In other words, composition of continuous functions is continuous.

Since the graph of a continuous function does not have any holes or jumps, we
may expect that if a continuous function f were to go from point f(a) to f(b),
it must go through all the points between f(a) and f(b), and this is indeed the
case.

Intermediate Value Theorem: Let f be a continuous function on the closed
interval [a, b]. Without lost of generality, let’s say f(a) ≤ f(b). Let N be any
number such that f(a) ≤ N ≤ f(b), then there exists a number c, a ≤ c ≤ b such
that f(c) = N

The intermediate value theorem says that, if you were to go from point a to point
b, without jumping or skipping, then you must go through all the points between
a and b.

Now that we have studied the concept of limits and how to find them, we are
ready to discuss the tangent problem that we mentioned. Remember that given a
function f(x), we want to find the slope of its tangent line at a point (x0, f(x0)).



We said that we can try to approximate the slope of this line by finding the slope
of a secant line with a nearby point (x0 + h, f(x0 + h)). According to algebra,
the slope of this secant line is given by:

slope of secant line = msec =
f(x0 + h)− f(x0)

(x0 + h)− x0
=
f(x0 + h)− f(x0)

h

This formula gives an approximation of the slope of the tangent line to f at
x = x0, if h is small (close to 0). Our intuition tells us that, the smaller (closer
to 0) h is, the better the slope of the secant line approximates the slope of the
tangent line. With the concept of limit, we define the slope of the tangent line
to be the limit of the secant lines:

Definition of the slope of a tangent line:

The slope m of the tangent line to a function f at the point (x0, f(x0)) is given
by:

slope of tangent line = m = lim
h→0

f(x0 + h)− f(x0)

h

if the limit exists.

E.g.: Find the slope of the line tangent to f(x) = x2 + 1 at x = 2.

To find the slope of the tangent line, we use the definition just mentioned, with
x0 = 2:



m = lim
h→0

f(2 + h)− f(2)

h
= lim

h→0

[
(2 + h)2 + 1

]
− (5)

h

Evaluating the limit gives:

lim
h→0

[4 + 4h+ h2 + 1]− 5

h

= lim
h→0

4h+ h2

h
= lim

h→0
4 + h = 4

The slope of the tangent line to f(x) = x2 + 1 at x = 2 is 4.

E.g. Find the equation of the line tangent to f(x) =
√
x at x = 4

m = lim
h→0

f(4 + h)− f(4)

h
= lim

h→0

√
4 + h−

√
4

h
= lim

h→0

√
4 + h− 2

h



To evaluate this limit we multiply by the conjugate of the numerator:

lim
h→0

√
4 + h− 2

h
= lim

h→0

(
√

4 + h− 2)(
√

4 + h+ 2)

h(
√

4 + h+ 2)

= lim
h→0

4 + h− 4

h(
√

4 + h+ 2)

= lim
h→0

h

h(
√

4 + h+ 2)
= lim

h→0

1√
4 + h+ 2

=
1√

4 + 0 + 2
=

1

2 + 2
=

1

4

We now have the slope of the tangent line, 1
4 , and we have a point, (4, 2), so we

may use the point-slope form of the equation of a line:

y − 2 =
1

4
(x− 4)⇒ y =

1

4
x+ 1

What does the slope of the tangent line represent? A slope between two points
represents a rate of change between two quantities. For example, if the x-axis
represents the time a car has spent in travelling along a straight line, and the
y-axis represents the displacement (how far from origin) of the car, then the slope
between any two points of the graph represents the average velocity of the car
between the two times.

The slope of the tangent line, then, represents an instantaneous rate of change
between two quantities. That is, given the distance vs time graph of ours, the
slope of the tangent line at any given point t represents the instantaneous velocity
of the car at that given moment in time. In general, for any function y = f(x),
the slope of the tangent line at x = a represents the instantaneous rate of change



of y with respect to x at a. For example, if x represents the time and y represents
the population, then the slope of the tangent line at a point in time represents
how fast the population is increasing (or decreasing) at that particular moment
in time.


