Polar Coordinates:

Instead of the rectangular coordinate system (x, y), which uses intersecting perpendicular lines to represent locations in a plane, sometimes it is useful to represent the location of a point in the coordinate plane using concentric circles intersecting with lines radiating from a common center. A point on this coordinate plane is formed when a circle with a certain radius r intersects a straight line radiating from the center making a certain angle θ with the x-axis (the polar axis). This coordinate system is the polar coordinate system.

Like the rectagular coordinate system, a point in polar coordinate consists of an ordered pair of numbers, (r, θ). The first coordinate is the distance of the point from the origin $(0,0)$, and the second coordinate is the angle, in standard position, and the point we want to locate is the terminal point of this angle.

Example:

The point $P=(1,1)$ (in rectangular coordinate) has a distance of $\sqrt{2}$ from the origin, and is the terminal point of the angle $\left(\frac{\pi}{4}\right)$, therefore, the equivalent polar coordinate of the point is: $P=\left(\sqrt{2}, \frac{\pi}{4}\right)$

Unlike the rectangular coordinate system, the polar representation of a point is not unique. For example, the above point P can also be represented as $P=$ $\left(\sqrt{2},-\frac{7 \pi}{4}\right)$ or $P=\left(\sqrt{2}, \frac{9 \pi}{4}\right)$.

If r is a positive number, we define the polar point $(-r, \theta)$ to be the point with the same distance r from the origin, but is to the opposite direction of the terminal point of θ. In other words, the point $(-r, \theta)$ is the same point as $(r, \theta+\pi)$

Example:

The polar point $\left(-2, \frac{5 \pi}{6}\right)$ is at the opposite side of the polar point $\left(2, \frac{5 \pi}{6}\right)$. The rectangular coordinate of this point is $(\sqrt{3},-1)$

Example: The polar point $\left(3,-\frac{2 \pi}{3}\right)$ has a rectangular coordinate of $\left(-\frac{3}{2},-\frac{3 \sqrt{3}}{2}\right)$.

We want to find formula that allows us to interchage between a point in polar coordinate (r, θ) and rectangular coordinate (x, y).

From the definition of the trig functions we have:
$\cos \theta=\frac{x}{r} \Rightarrow x=r \cos \theta$
$\sin \theta=\frac{y}{r} \Rightarrow y=r \sin \theta$
The above two formula allow us to change a polar coordinate (r, θ) to rectangular coordinate, (x, y).

To change from rectangular to polar, we use that fact that:
$x^{2}+y^{2}=r^{2} \Rightarrow r=\sqrt{x^{2}+y^{2}}$
and
$\tan \theta=\frac{y}{x} \Rightarrow \theta=\tan ^{-1}\left(\frac{y}{x}\right) \quad$ if $\quad x>0$
If $x<0$, then (x, y) will be in the second or third quadrant. Since the range of arctangent is only in the first or fourth quadrant, we need to make a little adjustment to angle θ :
$\theta=\pi+\tan ^{-1}\left(\frac{y}{x}\right) \quad$ if $\quad x<0$
Example: Express the rectangular point $(1,7)$ in polar coordinate:
This is a point in the first quadrant. The distance the point from the origin is $r=\sqrt{1^{2}+7^{2}}=\sqrt{50}=5 \sqrt{2}$

Since $x=1 \geq 0$, we use:
$\theta=\tan ^{-1}\left(\frac{7}{1}\right)=\tan ^{-1}(7)$
The polar equivalent of the rectangular point $(1,7)$ is $\left(5 \sqrt{2}, \tan ^{-1}(7)\right)$

Example: Express the rectangular point $(-2,-5)$ in polar coordinate:
$r=\sqrt{(-2)^{2}+(-5)^{2}}=\sqrt{4+25}=\sqrt{29}$
$\tan \theta=\frac{-5}{-2}=\frac{5}{2}$
This time, since $x=-2<0$, we need to add π to arctangent to correctly represent angle θ. We have:
$\theta=\pi+\tan ^{-1}\left(\frac{5}{2}\right)$
The polar equivalent of the rectangular point $(-2,-5)$ is
$\left(\sqrt{29}, \pi+\tan ^{-1}\left(\frac{5}{2}\right)\right)$

Example: Express the polar coordinate $\left(3,-\frac{\pi}{3}\right)$ in rectangular form:
Ans:
$x=3 \cos \left(-\frac{\pi}{3}\right)=3\left(\frac{1}{2}\right)=\frac{3}{2}$
$y=3 \sin \left(-\frac{\pi}{3}\right)=3\left(-\frac{\sqrt{3}}{2}\right)=-\frac{3 \sqrt{3}}{2}$
The coresponding rectangular point is $\left(\frac{3}{2},-\frac{3 \sqrt{3}}{2}\right)$

Equations in Polar Form:

In rectangular coordinate, we know that the equations $x=2$ or $y=3$ are equations of vertical and horizontal lines, respectively. What do the equations $r=2$ and $\theta=3$ in polar coordinate represent?

Note that in the rectangular equation, $x=2, y$ is a free variable, meaning that y can be any value. In the equation $r=2, \theta$ is also a free variable and can assume any value, therefore, any point that has a distance of 2 units from the origin will be a solution to the equation $r=2$, this is the graph of a circle with radius 2 centered at the origin.

In $\theta=3$ (3 is 3 radian, not 3 degrees), r is the free variable, so any points, as long as they are the terminal point of the angle (in standard position) that makes 3 radian angle with the x axis, will be on the curve, regardless of its distance from the origin. This is a straight line throught the origin with slope equal to $m=\tan (3)$.

In general, the polar equation $r=c,(c>0$ a constant $)$, is the equation of a circle with radius c centered at the origin.

The polar equation $\theta=c$, (c a constant), is the equation of a straight line through the origin with slope $m=\tan (c)$

Example: Describe the graph of the polar equation:
$r=\theta, 0 \leq \theta<\infty$
As θ increases, so does r, so we have a curve that keeps on expanding from the origin in a counter-clockwise, circular manner.

Example: Describe the graph of the polar equation:
$r=6 \cos \theta$
It may be a little easier if we change this back to rectangular equation:
$r=6\left(\frac{x}{r}\right)$
$r^{2}=6 x$
$x^{2}+y^{2}=6 x$
$x^{2}-6 x+y^{2}=0$
$x^{2}-6 x+9+y^{2}=9$
$(x-3)^{2}+y^{2}=9$
This is a circle with radius 3 centered at (rectangular point) $(3,0)$

Below are some polar equations that cannot be easily written in retangular form, and their corresponding graphs.
$r=1+\sin \theta$

$r=1-\sin \theta$

$$
r=1+\cos \theta
$$

$$
r=1+2 \sin \theta
$$

$r=1+\frac{4}{5}(\sin \theta)$

$r=1+\frac{2}{5}(\sin \theta)$

$r=\sin 2 \theta$

$$
r=\cos 2 \theta
$$

$$
r=\sin 3 \theta
$$

$r=\sin 4 \theta$

$$
r=\cos 5 \theta
$$

$$
r=1+\cos 2 \theta
$$

$r=1+2 \cos 2 \theta$

$r=1+\frac{4}{5} \cos 2 \theta$

