
Radian Measure

Given any circle with radius r, if θ is a central angle of the circle and s is the
length of the arc sustained by θ, we define the radian measure of θ by:

θ =
s

r

This defintion of an angle in radian measure is independent of the radius of the
circle. A larger circle with a longer radius, R, will also sustain a longer arc, S,

and the ratio,
S

R
will be the same as

s

r
. In other words, θ =

s

r
=
S

R

θ
r

s
θ

R

S



For a semi-circle with radius r, its circumfrence is πr, so the radian measure of
a semi-circle (a straight line) is

θ =
πr

r
= π

Since a (semi-circle) straight angle has measure 180◦, π radian is equivalent to
180◦.

Given an angle measurement in degree, multiply that number by
π

180◦
to find

the radian measure.

Given an angle measurement in radian, multiply that number by
180◦

π
to find

the degree measure.

Example: What is 55◦ in radian?

Ans: 55◦ · π

180◦
=

55

180
π =

11

36
π ≈ 0.31π ≈ 0.96

Example: What is 45◦ in radian?

Ans: 45◦ · π

180◦
=

45

180
π =

1

4
π =

π

4

Unless a decimal approximation is desired, we should always leave the number

in exact format. That is,
11

36
π or

11π

36
is the most desirable way of writing the

above angle measure in radian.

You should note that radian measure is a (real) number, and is more canon-
ical than degree measure when used in working with mathematical functions of
real numbers.

If an angle measurement is written without the ◦ symblo in the upper right, it is
a radian measure. If the ◦ is present, it is a degree measure.

Distingush the difference between 1◦ and 1 (radian).



Example: What is 1◦ in radian?

Ans: 1◦ · π

180◦
=

π

180
≈ 0.0056 (rad)

Example: What is 1 (rad) in degree?

Ans: 1 · 180◦

π
≈ 57.3◦

Example: What is
2π

3
radian expressed in degree measure?

Ans:
2π

3
· 180◦

π
=

360◦

3
= 120◦

Example: what is
π

6
radian in degree?

Ans:
π

6
· 180◦

π
=

180◦

6
= 30◦



With the Cartesian plane, we define an angle in Standard Position if it has its
vertex on the origin and one of its sides ( called the initial side ) is always on the
positive side of the x−axis. If we obtained the other side (Called the Terminal
Side) of the angle via a counter-clockwise rotation, we have a positive angle. If
the terminal side of the angle is obtained via a clockwise rotation, we have a
negative angle.

Using this definition, it is possible to define an angle of any (positive or negative)
measurement by recognizing how its terminal side is obtained.

E.g. The terminal side of
π

4
is in the first quadrant.

E.g. The terminal side of −π
6

is in the fourth quadrant.

E.g. The terminal side of
2π

3
is in the second quadrant.

E.g. The terminal side of
4π

3
is in the third quadrant.

E.g. The terminal side of
16π

7
is in the first quadrant.

E.g. The terminal side of π is the negative x−axis.

E.g. The terminal side of −π
2

is the negative y−axis.

Two angles are co-terminal angles if they have the same terminal side.

E.g. The two angles
π

3
and −5π

3
are co-terminal.

Notice that if θ is any angle, then the angles θ + 2π, θ + 4π, θ + 6π, θ + 8π, · · ·
are all co-terminal angles



Given a Circle with radius r centered at the origin (The equation of this
circle is x2 + y2 = r2), we define the terminal point of an angle θ to be the
point of intersection of the circle with the terminal side of θ.

E.g. The terminal point P of θ =
π

6
is in the first quadrant.

If the radius of the circle is r = 1, then the coordinate of this terminal point P

is

(√
3

2
,
1

2

)
If the radius of the circle is r = 3, then the coordinate of this terminal point P

is

(
3
√

3

2
,
3

2

)
E.g. The terminal point of θ =

π

2
is on the positive side of the y−axis. If the

radius of the circle is r = 1, then the coordinate of the terminal point of θ is
(0, 1).

Note:

Any co-terminal angle has the same terminal point.

If θ is an angle with terminal point P , then any angle of the form θ + 2π, θ +
4π, θ + 6π, θ + 8π, · · · all have P as the terminal point.

To find the coordinate of the terminal point, we need to know the radius of the
circle and the measurement of the angle.



Definition of the Trigonometric Functions Using circle:

Given an angle θ in standard position, on a circle with radius r, and the terminal
point of θ is P , and (x, y) is the coordinate of P , we define the six trigonometric
functions of θ by:

cos θ =
x

r
This is the cosine function.

sin θ =
y

r
This is the sine function.

tan θ =
y

x
This is the tangent function.

sec θ =
r

x
This is the secant function.

csc θ =
r

y
This is the cosecant function.

cot θ =
x

y
This is the cotangent function.

Sometimes, for convenience, we assume a circle of radius r = 1, called a unit
circle, when defining or evaluating the values of the trigonometric functions.

Note that we only need the measurement of the angle (we do not need to know
the radius of the circle) to find the values of the six tri functions (because the r
cancles out when we take the ratio of x or y with each other or with r.



Given an angle θ in standard position, the reference angle of θ is the acute
angle that the terminal side of θ makes with the x−axis. To find the coordinate
of the terminal point, it is most often easier to consider the length of the sides
of the right triangle formed by the terminal side of θ and the x−axis with the
reference angle of θ being one of the interior angles.

In the above picture, θ is the angle in standard position and β is the reference

angle. Note that the reference angle must be angle between 0 to
π

2
(0 to 90◦).



Example: The reference angle of a 120◦ angle is a 60◦ angle.

Example: The reference angle of a −235◦ angle is a 55◦ angle.



Example: The reference angle of a −30◦ angle is a 30◦ angle.



Example: For θ =
π

3
, find the values of the six tri functions of θ.

Notice that
π

3
= 60◦. Assuming a circle of radius 1, the terminal point P of θ

has coordinate

(
1

2
,

√
3

2

)
, so the values of the trig functions would be:

cos θ =
x

r
=

1
2

1
=

1

2
sin θ =

y

r
=

√
3
2

1
=

√
3

2

tan θ =
y

x
=

√
3
2
1
2

=
√

3 cot θ =
x

y
=

1
2√
3
2

=
1√
3

=

√
3

3

sec θ =
r

x
=

1
1
2

= 2 csc θ =
r

y
=

1
√
3
2

=
2√
3

=
2
√

3

3



Example:

30◦

Assuming a unit circle, if θ =
5π

6
= 150◦, its reference angle is

π

6
= 30◦, and the

terminal point P of θ has coordinate

(
−
√

3

2
,
1

2

)
. Therefore,

sin

(
5π

6

)
=

1

2

cos

(
5π

6

)
= −
√

3

2

tan

(
5π

6

)
=

1
2

−
√
3
2

= − 1√
3

= −
√

3

3



Example:

x

y

θ = −π
4

r = 1

P =

(√
2

2
,−
√
2

2

)

π

4 √
2

2

√
2

2

If we use a unit circle, when θ = −π
4

(45◦), then its reference angle is
π

4
, and

the terminal point P of θ has coordinate

(√
2

2
,−
√

2

2

)
. Therefore,

sin
(
−π

4

)
= −
√

2

2

cos
(
−π

4

)
=

√
2

2

tan
(
−π

4

)
=
−
√
2
2√
2
2

= −1



Example:

x

y
θ =

7π

6

r = 1

P =

(
−
√
3

2
,−1

2

)

π

61

2

√
3

2

If we use a unit circle, when θ =
7π

6
(210◦), then its reference angle is

π

6
(30◦),

and the terminal point P of θ has coordinate

(
−
√

3

2
,−1

2

)
. Therefore,

sin

(
7π

6

)
= −1

2

cos

(
7π

6

)
= −
√

3

2

tan

(
7π

6

)
=
−1

2

−
√
3
2

=
1√
3



Example:

x

y

θ =
2π

3

r = 1

P =

(
−1

2
,

√
3

2

)

π

3

√
3

2

1

2

If we use a unit circle, when θ =
2π

3
(120◦), then its reference angle is

π

3
(60◦),

and the terminal point P of θ has coordinate

(
−1

2
,

√
3

2

)
. Therefore,

sin

(
2π

3

)
=

√
3

2

cos

(
2π

3

)
= −1

2

tan

(
2π

3

)
=

√
3
2

−1
2

= −
√

3



Example:

x

y

θ =
23π

6

r = 1

P =

(√
3

2
,−1

2

)

π

6
1

2

√
3

2

If we use a unit circle, when θ =
23π

6
(690◦), then its reference angle is

π

6
, and

the terminal point P of θ has coordinate

(√
3

2
,−1

2

)
. Therefore,

sin

(
23π

6

)
= −1

2

cos

(
23π

6

)
=

√
3

2

tan

(
23π

6

)
=
−1

2√
3
2

= − 1√
3

Notice that θ =
23π

6
= 2π +

11π

6
is greater than 2π, therefore when we draw

the terminal point of θ in standard position, we completed one cycle (2π), then

rotated another
11π

6
= 330◦ to reach the terminal point P .



Example:

x

y

P = (0, 1)

θ =
π

2

If we use a unit circle, when θ =
π

2
(90◦), then its terminal point lies on the

y−axis and has coordinate (0, 1). Therefore,

sin
(π

2

)
= 1

cos
(π

2

)
= 0

tan
(π

2

)
=

1

0
= undefined.

While in all the examples we did we assumed a circle of radius 1, it is important
for you to know that, in order to find the value of the trig functions on an angle
θ, we can use a circle of any radius. We used 1 out of convenience, but our
answer would be the same if we had used a circle of radius 2, or 0.5, or any other
positive number.



Example: The terminal point of angle θ has coordinate (3,−1), find the value of
the six trigonometric functions of θ.

x

y

θ

r =
√

10

3

1

P = (3,−1)

In this example, it would be more convenient to solve the problem if we use a
circle of radius

√
10 (why?), then according to the picture,

sin θ =
y

r
=
−1√

10
= − 1√

10

cos θ =
x

r
=

3√
10

tan θ =
y

x
=
−1

3
= −1

3

Notice that in solving this problem, we do not need to know the value of θ. In
fact, we do not even know if θ is positive or negative. The only information we
have (and it is the only information we need) is the coordinate of the terminal
point of θ.



Example:

Find the exact value of the other trigonometric functions of θ if

sin θ = −2

5
and the terminal point of θ is in the third quadrant.

Ans: It would be more convenient if we use a circle of radius 5. Since the terminal
point of θ is in the third quadrant, the coordinate of the terminal point P of θ is
P = (−

√
21,−2). We get:

cos θ = −
√

21

5

tan θ =
−2

−
√

21
=

2√
21

csc θ =
1

sin θ
= −5

2

sec θ =
1

cos θ
= − 5√

21

cot θ =
−
√

21

−2
=

√
21

2



Fundamental Properties of The Trigonometri Functions:

sin and csc are reciprocal functions of each other, that is:

csc(x) =
1

sin(x)

cos and sec are reciprocal functions of each other:

sec(x) =
1

cos(x)

tan and cot are reciprocal functions of each other:

cot(x) =
1

tan(x)

In addition, tan is the quotient of sin and cos:

tan(x) =
sin(x)

cos(x)

cot(x) =
cos(x)

sin(x)

The following equation can be derived from the pythagorean theorem, and is
called the Pythagorean Identity: For all real numbers x, we have:

sin2(x) + cos2(x) = 1

Note: sin2(x) means (sinx)2. In general, to represent (sinx)n, we write sinn(x).
This notation applies to other tri functions too.



More properties of the tri functions:

sin (and its reciprocal, csc), is an odd function, that is,

sin(−x) = − sin(x) for all real numbers x

cos (and its reciprocal, sec), is an even function, that is,

cos(−x) = cos(x) for all real numbers x

The product (and quotient) of an odd function with an even function is odd, so
tan and cot are both odd functions.



Periodic Function

A function f is said to be periodic is there exists a positive number p such that
f(x + p) = f(x) for all real number x in the domain of f . The smallest of such
number is called the period of f .

All six of the tri functions are periodic. Intuitively, a periodic function repeats
itself in behavior. The period of sin, cos, csc, and sec is 2π, and the period of
tan and cot is π. Therefore, we have:

sin(x+ 2π) = sin(x) for all x in the domain of sin

cos(x+ 2π) = cos(x) for all x in the domain of cos

tan(x+ π) = tan(x) for all x in the domain of tan

csc(x+ 2π) = csc(x) for all x in the domain of csc

sec(x+ 2π) = sec(x) for all x in the domain of sec

cot(x+ π) = cot(x) for all x in the domain of cot

Domain and Range of Tri Functions

The domain of both the sin and cos functions is all real numbers. I.e., sin and
cos are defined everywhere.

The range of both sin and cos is the closed interval [−1, 1]

The domain of the other four trigonometric functions are not as easily determined,
and we will discuss about that later.



Graphing

To draw the graph of f(x) = sin(x), we start from x = 0 and go counter-clockwise
(positive x) for a 2π period. Notice that sin(x) moves from 0 up to 1 when x

moves from 0 to
π

2
, then sin(x) moves from 1 back to 0 as x moves from

π

2
moves

to π, then sin(x) becomes negative and moves from 0 to −1 as x moves from π to
3π

2
, and sin(x) moves from −1 back to 0 as x moves from

3π

2
to 2π, completing

the cycle.

Once one cycle of the sin graph is drawn, one need only to copy and paste this
shape onto the rest of the x-axis to complete the graph of sin, as we know that
sin is periodic.

y = sin(x)
(π/2, 1)

(π, 0)

(3π/2,−1)

(2π, 0)

A similar technique can be used to draw the basic graph of the cosine function.



y = cos(x)
(0, 1)

(π/2, 0)

(π,−1)

(3π/2, 0)



Graphing Trigonometric Functions in General Form

Graph f(x) = A sin(Bx+ C) + k, where A, B, C, and k are real constants, and
B > 0

We want to form a rectangle (the envelop) which encloses one cycle of this func-
tion. We need the following information of the rectangle:

1. The Amplitude (the distance from the middle of the envelop to the top or
bottom) of the rectangle is |A|.

2. The starting point of the envelop is at −C
B

(This is called the phase shift)

3. The period, p, of the function (length of the rectangle) is
2π

|B|

The frequency, f , of a periodic function is the reciprocal of its period, that is,

f =
|B|
2π

4. The end point of the rectangle is at starting point + period, i.e. end point

= −C
B

+
2π

|B|
5. The intersections of the function f with the middle line (x-axis if k = 0)
occurs at the points:

starting point +
p

4

starting point +
p

2

starting point +
3p

4
where p is the period.

6. The rectangle is moved up k units if k > 0 and moved down |k| units if k < 0.



E.g. Graph f(x) = 3 cos(2x− 1)− 2

Ans:

We have A = 3, B = 2, C = −1, and k = −2.

|A| = |3| = 3. This is the amplitude.

Setting 2x − 1 = 0 and solve for x, we get x =
1

2
. This is our starting point.

(Phase shift).

p =
2π

|B|
=

2π

2
= π. The period of f is π.

End point = starting point + period =
1

2
+ π.

p

4
=
π

4
, so the intersections of the function with the middle line occurs at

1

2
+

π

4
,

1

2
+
π

2
,

1

2
+

3π

4
k = −2, so the graph is moved 2 units down.

Don’t forget to copy and paste this rectangle to the whole x−axis.



Graphing Tangent and Cotangent functions:

The domain of tangent is all real numbers x such that x 6= π

2
+ nπ, where n is

any integer.

Suppose θ is an angle in standard position, P = (x, y) is the terminal point of θ,
we want to find out the behavior of tangent for θ between 0 to π.

tan(0) = 0, and as θ moves from 0 to
π

2
, the value of y becomes larger and larger

while the value of x becomes smaller and smaller, so the ratio
y

x
becomes larger

and larger. In fact,
y

x
→∞ as θ → π

2

At θ =
π

2
, x = 0, so tan(θ) =

y

x
is undefined. Tangent has a vertical asymptote

at the point θ =
π

2
.

As θ moves from
π

2
toward π, y becomes smaller and smaller in value, as x

increases in magnitude. But notice that x is now negative, so
y

x
is now a negative

number, and it becomes closer and closer to zero as θ moves toward π. At θ = π,

y = 0 and tan(θ) =
y

x
= 0.

It is generally more natural to consider that one cycle of tangent starts from −π
2

and ends at
π

2
, as this gives us one connected piece of the tangent function.

y = tan(x)



We can also draw the graph of the cotangent function in a similar way:

y = cot(x)



For a general graph of the form: f(x) = A tan(Bx+ C), we set

Bx + C = −π
2

to solve for x, this again gives us the starting point of one cycle

of tangent.

The period of f is
π

|B|
. Notice that we are taking π divided by |B|, not 2π, as

the natural period for tan is π.

Tangent does not have an amplitude since it does not have a lowest or highest
point. A determines the vertical stretch of the function.



To draw the graph of f(x) = A csc(Bx+C) or f(x) = A sec(Bx+C), we draw the
corresponding sin or cos function and use that as a guideline. The x intercepts of
sin and cos will be where the vertical asymptotes of the csc and cos is. Notice that
the domain of csc is all real numbers x where sin(x) 6= 0, and since sin(nπ) = 0
for all integer n, the domain of csc is all real numbers x such that x 6= nπ, n an
integer.

Similarly, the domain of sec is all real numbers x such that x 6= π

2
+ πn

y = sec(x)



y = csc(x)



Trigonometric Identities:

We have seen some of the identities of the trigonometri functions. We will intro-
duce more:

Fundamental Identities:

(*) csc(x) =
1

sin(x)

(*) sec(x) =
1

cos(x)

(*) cot(x) =
1

tan(x)

(*) tan(x) =
sin(x)

cos(x)

(*) cot(x) =
cos(x)

sin(x)

Even Odd properties:

(*) sin(−x) = − sin(x)

(*) tan(−x) = − tan(x)

(*) cos(−x) = cos(x)

Pythagorean Identities:

(*) sin2(x) + cos2(x) = 1

tan2(x) + 1 = sec2(x)

1 + cot2(x) = csc2(x)

Cofunction Identities:

sin
(π

2
− x
)

= cos(x)

cos
(π

2
− x
)

= sin(x)

Sum (and difference) of Angles Identities:

(*) sin(x+ y) = sin(x) cos(y) + cos(x) sin(y)

(*) cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)

(*) sin(x− y) = sin(x) cos(y)− cos(x) sin(y)

(*) cos(x− y) = cos(x) cos(y) + sin(x) sin(y)



tan(x− y) =
tan(x)− tan(y)

1 + tan(x) tan(y)

Double Angle Identities:

(*) sin 2x = 2 sin x cosx

(*) cos 2x = cos2 x− sin2 x = 1− 2 sin2 x = 2 cos2 x− 1

tan 2x =
2 tanx

1− tan2 x

Half Angle Identities:

sin
x

2
= ±

√
1− cosx

2

cos
x

2
= ±

√
1 + cos x

2

Power Reduction Identity :

sin2 x =
1

2
(1− cos(2x))

cos2 x =
1

2
(1 + cos(2x))

Product to Sum and Sum to Product Identities:

sinx cos y =
1

2
[sin(x+ y) + sin(x− y)]

sinx sin y =
1

2
[cos(x− y)− cos(x+ y)]

cosx cos y =
1

2
[cos(x+ y) + cos(x− y)]

sinx+ sin y = 2 sin

(
x+ y

2

)
cos

(
x− y

2

)
sinx− sin y = 2 cos

(
x+ y

2

)
sin

(
x− y

2

)
cosx+ cos y = 2 cos

(
x+ y

2

)
cos

(
x− y

2

)
cosx− cos y = −2 sin

(
x+ y

2

)
sin

(
x− y

2

)



Verifying Trig Identities:

Using the known trigonometric identities, we can transform a trigonometric ex-
pression written in one form into another. We need to use rules of algebra and
other known tri identities to verify that the two sides of the equal sign are equal
to each other.

It is important to note that, while verifying a tri-identity, one may not assume
the identity as equal. Instead, you must start with one side of the identity
(either the left or right hand side is fine) and, by using correct algebra and other
tri identites, change the expression to look the same as the other side. You may
not work the expression as if you are solving an equation.

Example

Verify

sin t

csc t
+

cos t

sec t
= 1

Ans: We may start with either the left or right hand side, but for this example,
the right hand side is too simple and does not allow for any clue as to where we
should go, it is easier that we start with the left hand side:

L.H.S =
sin t

csc t
+

cos t

sec t
= sin t · 1

csc t
+ cos t · 1

sec t

= sin t sin t+ cos t cos t = sin2 t+ cos2 t = 1 = R.H.S.

Example: Verify

1− cosx

1 + cos x
=

secx− 1

secx+ 1

Ans: Both sides are equally complicated. Let’s start with the left hand side:

L.H.S. =
1− cosx

1 + cos x
=

(1− cosx)(secx)

(1 + cos x)(secx)
=

secx− cosx secx

secx+ cosx secx

=
secx− 1

secx+ 1
= R.H.S.

An example of an incorrect way of trying to “verify” the above identity would
be something like this:

1− cosx

1 + cos x
=

secx− 1

secx+ 1

(1− cosx)(secx+ 1) = (secx− 1)(1 + cos x)

secx+ 1− cosx secx− cosx = secx+ secx cosx− 1− cosx

secx+ 1− 1− cosx = secx+ 1− 1− cosx



secx− cosx = secx− cosx

In doing the cross multiply and whatever steps follow, you have already assumed
that the two sides are equal to each other. This is logically invalid and does
not constitute a valid argument for varifying anything. (In logic, this is called a
circular argument)

Example: Verify the identity:

(sinx+ cosx)2 = 1 + sin 2x

Ans: We start with the left hand side:

L.H.S = (sinx+ cosx)2 = sin2 x+ 2 sinx cosx+ cos2 x

= sin2 x+ cos2 x+ 2 sinx cosx = 1 + 2 sinx cosx = 1 + sin 2x = R.H.S.

Example: Verify the identity:

cotx− tan y =
cos(x+ y)

sinx cos y

This time, it is easier to start with the right hand side:

R.H.S. =
cos(x+ y)

sinx cos y
=

cosx cos y − sinx sin y

sinx cos y

=
cosx cos y

sinx cos y
− sinx sin y

sinx cos y
=

cosx

sinx
− sin y

cos y
= cotx− tan y = L.H.S.



Inverse Trigonometric Functions:

The inverse sine function, denoted by f(x) = arcsin(x) or f(x) = sin−1(x) is
defined by:

y = sin−1(x) if and only if sin(y) = x and −π
2
≤ y ≤ π

2

I.e., the range of f(x) = arcsin(x) is all real numbers y such that −π
2
≤ y ≤ π

2

The inverse cosine function, denoted by f(x) = arccos(x) or f(x) = cos−1(x) is
defined by:

y = cos−1(x) if and only if cos(y) = x and 0 ≤ y ≤ π

I.e., the range of f(x) = arccos(x) is all real numbers y such that 0 ≤ y ≤ π

The inverse tangent function, denoted by f(x) = arctan(x) or f(x) = tan−1(x)
is defined by:

y = tan−1(x) if and only if tan(y) = x and −π
2
< y <

π

2

I.e., the range of f(x) = arctan(x) is all real numbers y such that −π
2
< y <

π

2
The inverse trigonometric functions are the inverse functions of the trigonometric
functions. They undo the effect of the original tri functions. Keep in mind that
since a trigonometric function takes an angle measurement (in radian) as input
and gives a real number as output, an inverse tri function (such as arccos or arcsin
takes a real number as input and produces an angle measurement (in radian) as
output.

The domain of the sine function is all real numbers. Ideally, to undo the effect
of sine, we would like the range of the f(x) = arcsin(x) function to be all real
numbers too. Unfortunately, since sine is NOT a one-to-one function, this is not
possible.

More precisely, since:

sin(0) = 0

sin(π) = 0

sin(2π) = 0

We would like

arcsin(0) = 0

arcsin(0) = π

arcsin(0) = 2π



But this would make f(x) = arcsin(x) fails to be a function. As a result, we
need to restrict the range for arcsin such that, within this range, arcsin returns
only one output for each input. We make the choice based on convenience. As a

result, we chose the range of arcsin to be
[
−π

2
,
π

2

]
. Using similar guidelines, we

defined the range of the other inverse trigonometric functions the way we did.

Example:

Find the value of sin−1

(
−
√

2

2

)

Ans: Let θ = sin−1

(
−
√

2

2

)
, then by definition, sin(θ) = −

√
2

2
and −π

2
≤ θ ≤

π

2
. The only angle that satisfies both of these requirements is θ = −π

4
.

Therefore, sin−1

(
−
√

2

2

)
= −π

4

Example:

Find cos−1

(
−
√

3

2

)

Ans: Let θ = cos−1

(
−
√

3

2

)
, by definition, we want

cos(θ) = −
√

3

2
and 0 ≤ θ ≤ π. The only angle that satisfies both of these

requirements is θ =
5π

6
.

Therefore, cos−1

(
−
√

3

2

)
=

5π

6

Example:

Find arcsin

(
sin

(
31π

4

))
Ans:

31π

4
= 7π +

3π

4
.

Since sine is periodic, sin

(
7π +

3π

4

)
= sin

(
π +

3π

4

)
.



Let θ = arcsin

(
sin

(
31π

4

))
. We want:

sin(θ) = sin

(
π +

3π

4

)
and −π

2
≤ θ ≤ π

2

The terminal side of

(
π +

3π

4

)
is in the fourth quadrant, therefore, sin

(
π +

3π

4

)
is negative. We need sin(θ) to be negative and −π

2
≤ θ ≤ π

2
. This tells us that

θ must be an angle in the fourth quadrant and the only angle θ that satisfies this

requirement is θ = −π
4

.

Example:

Find arccos (cos (23π + 3))

Ans: (23π + 3 = 22π + π + 3)

Since cosine is periodic, cos (23π + 3) = cos (π + 3)

Let θ = arccos (cos (23π + 3)). We want:

cos(θ) = cos (π + 3) and 0 ≤ θ ≤ π

The terminal side of (π + 3) is in the fourth quadrant (why?), which makes
cos(π + 3) positive. Therefore, cos(θ) must also be positive and 0 ≤ θ ≤ π. The
terminal side of θ must be in the first quadrant and the only angle θ that satisfies
this requirement is θ = π − 3 (why)?

Example:

Find cos

(
arctan

(
−5

7

))
Ans: Let θ = arctan

(
−5

7

)
, we have

tan(θ) = −5

7
and −π

2
< θ <

π

2
. If we draw θ in standard position, the terminal

side of θ is in quadrant IV. Using the Pythegorean Theorem, we see that the
coordinate of the terminal point P of θ is P = (7,−5) where the radius of the
circle we are using is r =

√
74.

Using this information, cos

(
arctan

(
−5

7

))
= cos θ =

7√
74

Example:

Find sin

(
arccos

(
−2

3

))



Ans: Let θ = arccos

(
−2

3

)
, we have

cos(θ) = −2

3
and 0 ≤ θ ≤ π. If we draw θ in standard position, the terminal

side of θ is in quadrant II. Using the Pythegorean Theorem, we see that the

coordinate of the terminal point P of θ is P =
(
−2,
√

5
)

where the radius of the

circle we are using is r = 3.

Using this information, sin

(
arccos

(
−2

3

))
= sin θ =

√
5

3

Example:

Express tan(arcsin(x)) in terms of x so that the expression is free of any trigono-
metric function. Assume that x is a positive number.

Ans: Let θ = arcsin(x), we have

sin(θ) = x and since x is positive, the terminal side of θ must be in the first
quadrant. Using the Pythegorean Theorem, we see that the coordinate of the

terminal point P of θ is P =
(√

1− x2, x
)

where the radius of the circle we are

using is r = x.

Using this information, tan(arcsinx) = tan(θ) =
x√

1− x2



Solving Trigonometric Equations To solve equations that involve trigono-
metric functions, one wants to isolate the (hopefully one) tri function then use
special triangle or the inverse tri functions to isolate the variable. Note that
since a trigonometric function is not an algebraic function (i.e. to find sin(x) we
cannot find the value by performing algebraic operations on x), we cannot isolate
x by performing algebraic operations. We can only use our knowledge of special
triangles, or using the inverse functions.

Example:

Solve the equation:

sin(x) =

√
3

2

Ans: There are two angles in [0, 2π) that solve the equation, namely
π

3
and

2π

3
In addition, since sine is periodic with a period of 2π, if x is a solution to the
equation, then x+ 2π, x+ 4π, x+ 6π, x− 2π, x− 4π, ... are all solutions to the
equation. Therefore, our complete solution set will be:

x =
π

3
+ 2πn or x =

2π

3
+ 2πn

where n is an integer.

Example:

Solve the equation:

tan(x) = −1

Ans: Tangent is negative in the second and fourth quadrant. In the second

quadrant the angle that would solve this equation is x =
3π

4
Since tan has a period of π instead of 2π, we don’t need to add 2π to the angle
to find all the solutions. Instead, we have:

x =
3π

4
+ πn, where n is an integer.

Example:

Solve the equation:

cos(2x+ 1) = −
√

3

2
Ans: We treat 2x− 1 as a single quantity. I.e., substitue y = 2x− 1 and we are

looking at the equation cos(y) = −
√

3

2
.



The two angles in [0, 2π) that solves the equation is:

y =
5π

6
and y =

7π

6
Since we are solving for x, not for y, we must back substitue x into the equation:

2x+ 1 =
5π

6

2x+ 1 =
7π

6
Since cos is a periodic function with period of 2π, any integral multiple of 2π
added to the angles will solve the equation too, so the complete solutions will be:

2x+ 1 =
5π

6
+ 2πn

2x+ 1 =
7π

6
+ 2πn

where n is an integer.

We still need to isolate x in the above equations:

x =
5π

12
− 1

2
+ πn

or

x =
7π

12
− 1

2
+ πn

Note from the example that you add the 2πn to the angles immediately after
you isolated the argument (2x + 1) of cos, but before you isolated x. Some
people, not understanding the reason for adding the 2πn, would just always add
the 2πn after they isolated x. This is incorrect. The angles that cosine must take

to produce a value of −
√

3

2
is

(
5π

6
+ 2πn

)
or

(
7π

6
+ 2πn

)
.

Since (2x + 1) is the argument to cosine in the equation, (2x + 1) must equal

to

(
5π

6
+ 2πn

)
or

(
7π

6
+ 2πn

)
, not x itself. We will, instead, isolate x using

algebraic means after we solved for 2x+ 1.

Example: Solve: cos(2x)− 3 cos(x)− 1 = 0

Ans: We use the double angle formula to change cos(2x) to

cos(2x) = 2 cos2(x)− 1.

We have:(
2 cos2(x)− 1

)
− 3 cos(x)− 1 = 0

2 cos2(x)− 3 cos(x)− 2 = 0



This is a quadratic equation in cos(x), factoring we get:

(2 cos(x) + 1)(cos(x)− 2) = 0

This gives:

2 cos(x) + 1 = 0

or

cos(x)− 2 = 0

We can ignore the second equation as it will not give us any solution. (why?)
The first equation gives us:

cos(x) = −1

2

The two angles in [0, 2π) that solves the equation is:

x =
2π

3
and x =

4π

3
Adding any integral multiple of 2π will give us the same solutions too, so the
complete solution set will be:

x =
2π

3
+ 2πn

or

x =
4π

3
+ 2πn

where n is an integer

Example: Solve for exact value:

sin(x) = −1

3
, 0 ≤ x < 2π

Ans: Since 1/3 is the not the ratio of a special triangle, we have to use sin−1.
Notice that

x = sin−1
(
−1

3

)
is an angle between −π

2
and 0 (why?). This value is outside of

the interval where we want our solution for x to be. Instead, note that sin will
be negative in the third and fourth quadrant. In the third quadrant, the angle
that is within the desired interval is:

x = π − sin−1
(
−1

3

)
.

The other angle that would work is the angle in the fourth quadrant, x = 2π +

sin−1
(
−1

3

)
.

The solution set is thus:



x = π − sin−1
(
−1

3

)
or x = 2π + sin−1

(
−1

3

)
.

Example: Solve for exact value:

cos(x) = −1

5
Ans: Another ratio that does not come from a special triangle. We use:

x = cos−1
(
−1

5

)
This will produce the angle in the second quadrant. Since cos is an even function,

x = − cos−1
(
−1

5

)
will also work. Adding our 2πn gives the complete solution:

x = ± cos−1
(
−1

5

)
+ 2πn


