We can think of a complex number $a+b i$ as the point (a, b) in the $x y$ plane. In this representation, a is the x coordinate and b is the y coordinate. The x-axis is called the real axis and the y-axis the imaginary axis, and we refer to this plane as the complex plane.

Example: The complex number $3-2 i$ can be viewed as the point $(3,-2)$ in the complex plane.

Given a complex number $z=x+y i$, we define the magnitude of z, written $|z|$, as:
$|z|=\sqrt{x^{2}+y^{2}}$.
Graphically, the magniture of z is the distance between z (viewed as a point on the $x y$ plane) and the origin.

Graphically, if we add two complex number, we are adding the two numbers by treating them as vectors and adding like vector addition.

For example, Let $z=5+2 i, w=1+6 i$, then
$z+w=(5+2 i)+(1+6 i)=(5+1)+(2+6) i=6+8 i$

In order to interpret multiplication of two complex numbers, let's look again at the complex number represented as a point on the complex plane. This time, we let $r=\sqrt{x^{2}+y^{2}}$ be the magnitude of z. Let $0 \leq \theta<2 \pi$ be the angle in standard position with z being its terminal point. We call θ the argument of the complex number z :

By definition of sine and cosine, we have

$$
\begin{aligned}
& \cos (\theta)=\frac{x}{r} \Rightarrow x=r \cos (\theta) \\
& \sin (\theta)=\frac{y}{r} \Rightarrow y=r \sin (\theta)
\end{aligned}
$$

We have obtained the polar representation of a complex number:
Suppose $z=x+y i$ is a complex number with (x, y) in rectangular coordinate. Let $r=|z|=\sqrt{x^{2}+y^{2}}$, let $0 \leq \theta<2 \pi$ be an angle in standard position whose terminal point is (x, y) (in other words, (r, θ) is the polar coordinate of (x, y)), then
$z=x+y i=r \cos (\theta)+r(\sin (\theta)) i=r[\cos (\theta)+i \sin (\theta)]$
Example: Write $-2 \sqrt{3}-2 i$ in polar form:
Ans: $r=\sqrt{(-2 \sqrt{3})^{2}+(-2)^{2}}=\sqrt{(4 \cdot 3)+4}=\sqrt{12+4}=4$

The sides of the triangle formed has length $2,2 \sqrt{3}$, and 4 . This is the ratio of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, meaning that $\theta=\frac{7 \pi}{6}$
Therefore,
$z=-2 \sqrt{3}-2 i=4\left[\cos \left(\frac{7 \pi}{6}\right)+i \sin \left(\frac{7 \pi}{6}\right)\right]$

Example: Express the (polar form) complex number $z=3\left[\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right]$ as a complex number in rectangular form.
Ans: $\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}$, and, $\sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}$, we have:
$z=3\left[\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right]=3\left[-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right]=-\frac{3}{2}+\frac{3 \sqrt{3}}{2} i$

Let $z_{1}=r_{1}\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right)$, let $z_{2}=r_{2}\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right)$, then,
$z_{1} \cdot z_{2}=\left[r_{1}\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right)\right]\left[r_{2}\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right)\right]$
$=r_{1} r_{2}\left[\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right)\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right)\right]$
$=r_{1} r_{2}\left[\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+i \cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+i \sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+i^{2} \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right]$
$=r_{1} r_{2}\left[\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+i \cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+i \sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right]$
$=r_{1} r_{2}\left[\left(\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right)+i\left(\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)\right)\right]$
$=r_{1} r_{2}\left[\left(\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right)+i\left(\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right)\right]$
$=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \quad$ (double angle identity)
We have just proved the following formula:
Let $z_{1}=r_{1}\left[\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right], z_{2}=r_{2}\left[\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right]$, be complex numbers in polar form, then
$z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$
This formula tells us that, goemetrically, to multiply two complex numbers is to multiply their magniture and add their argument. In other words, to multiply $z_{1}=r_{1}\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right)$ and $z_{2}=r_{2}\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right)$, we multiply their magniture, r_{2} and r_{2}, and add their argument, θ_{1} and θ_{2}. The result (product) is a complex number whose magnitude is $r_{1} r_{2}$ and whose argument is $\theta_{1}+\theta_{2}$.

$(0,0)$

We can use a similar method to prove the following formula for dividing two complex numbers in polar form:

Let $z_{1}=r_{1}\left[\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right]$, let $z_{2}=r_{2}\left[\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right], z_{2} \neq 0$, be complex numbers in polar form, then

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]
$$

Example: Let $z_{1}=2\left[\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right], z_{2}=5\left[\cos \left(\frac{4 \pi}{3}\right)+i \sin \left(\frac{4 \pi}{3}\right)\right]$
then by the formula,
$z_{1} z_{2}=(2)(5)\left[\cos \left(\frac{\pi}{4}+\frac{4 \pi}{3}\right)+i \sin \left(\frac{\pi}{4}+\frac{4 \pi}{3}\right)\right]=10\left[\cos \left(\frac{19 \pi}{12}\right)+i \sin \left(\frac{19 \pi}{12}\right)\right]$
Example: Let $z=r(\cos (\theta)+i \sin (\theta))$, find z^{2} and z^{3}
Ans: Using the formula, $z^{2}=z \cdot z=[r(\cos (\theta)+i \sin (\theta))][r(\cos (\theta)+i \sin (\theta))]$
$=r \cdot r[\cos (\theta+\theta)+i \sin (\theta+\theta)]=r^{2}[\cos (2 \theta)+i \sin (2 \theta)]$
Similarly, to find z^{3}, we note that $z^{3}=z^{2} \cdot z$
$=\left[r^{2}(\cos (2 \theta)+i \sin (2 \theta))\right][r(\cos (\theta)+i \sin (\theta))]$
$=r^{2} \cdot r[\cos (2 \theta+\theta)+i \sin (2 \theta+\theta)]=r^{3}[\cos (3 \theta)+i \sin (3 \theta)]$
This pattern tells us that, each time we raise a complex number z to an integer power, n, we raise its magniture, r, to the $n-$ th power, and multiply its argument, θ, by n. This is the:

De Moivre's Theorem:

Suppose $z=r[\cos (\theta)+i \sin (\theta)]$ is a complex number is polar form, and $n \geq 1$ is a positive integer, then:
$z^{n}=r^{n}[\cos (n \theta)+i \sin (n \theta)]$
Example: Let $z=\frac{\sqrt{3}}{2}+\frac{1}{2} i$ be a complex number in rectangular form. Find z^{17}

Ans: We first write z in polar form. We note that θ, the argument of z, is the angle of the special $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, so $\theta=\frac{\pi}{6}$
$r=|z|=\sqrt{x^{2}+y^{2}}=\sqrt{\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}+\frac{1}{2}}=\sqrt{1}=1$

Therefore, $z=\frac{\sqrt{3}}{2}+\frac{1}{2} i=1\left[\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right]$
Using De Moivre's Theorem, we have:

$$
\begin{aligned}
& z^{17}=1^{17}\left[\cos \left(17 \cdot \frac{\pi}{6}\right)+i \sin \left(17 \cdot \frac{\pi}{6}\right)\right]=1\left[\cos \left(\frac{17 \pi}{6}\right)+i \sin \left(\frac{17 \pi}{6}\right)\right] \\
& =\left[\cos \left(2 \pi+\frac{5 \pi}{6}\right)+i \sin \left(2 \pi+\frac{5 \pi}{6}\right)\right]=\left[\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)\right]=-\frac{\sqrt{3}}{2}+\frac{1}{2} i
\end{aligned}
$$

Example: Let $z=-1+i$, find z^{14}
Ans: We again first write z in polar form:

We find $r=|z|=\sqrt{x^{2}+y^{2}}=\sqrt{(-1)^{2}+(1)^{2}}=\sqrt{2}$
The x - and y-coordinate of z forms an isoceles right triangle with the x-axis, so the reference angle of z is $\frac{\pi}{4}$, meaning that the argument of z, θ, is $\theta=\frac{3 \pi}{4}$. We have:
$z=-1+i=\sqrt{2}\left[\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right]$
Using De Moivre's Theorem, we have:
$z^{14}=(\sqrt{2})^{14}\left[\cos \left(14 \cdot \frac{3 \pi}{4}\right)+i \sin \left(14 \cdot \frac{3 \pi}{4}\right)\right]=(2)^{7}\left[\cos \left(\frac{21 \pi}{2}\right)+i \sin \left(\frac{21 \pi}{2}\right)\right]$
$=128\left[\cos \left(10 \pi+\frac{\pi}{2}\right)+i \sin \left(10 \pi+\frac{\pi}{2}\right)\right]=128\left[\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right]$
$=128[0+i(1)]=128 i$

We know the meaning of the n-th root of real numbers like $\sqrt{5}$ or $\sqrt[3]{13}$. With the introduction of complex numbers, even numbers like $\sqrt{-3}$ can now be expressed as complex numbers. But what about numbers like the square root or cube roots of complex numbers? For example, what is the meaning of \sqrt{i} or $\sqrt[3]{1+i}$, and does it exist?

By definition of the n-th root, we know that if $b=\sqrt[n]{a}$, this means that $b^{n}=a$. So if w is a complex number, if we say $z=\sqrt[n]{w}$, we are looking for a number z with the property that $z^{n}=w$. If we write w as a complex number in polar form, then De Movire's Theorem allows us to find all the $n-$ th roots of w.

The n-th roots of a complex number:

Let $n \geq 1$ be a positive integer, let $w=r[\cos (\theta)+i \sin (\theta)]$ be a complex number in polar form with $r>0$ be the magniture of w, then the equation $z^{n}=w$ has n distinct (complex numbers) solutions. Each solution z_{k} is of the form:
$z_{k}=\sqrt[n]{r}\left[\cos \left(\frac{\theta}{n}+\frac{2 k \pi}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{2 k \pi}{n}\right)\right]$,
where $k=0,1,2,3, \ldots, n-2, n-1$
The above theorem tells us that each complex number w always has n distinct (complex) n-th roots.

Example: Find all the cube roots of i. In other words, find all the (complex) solutions of the equation: $z^{3}=i$. Write your answer in rectangular form if possible.

Ans: According to the theorem just mentioned, there will be three distinct complex numbers z that satisfies the equation. In order to apply the theorem, we need to represent i in polar form. Notice that $|i|=1$, and the terminal side of i is the y-axis, with an argument of $\theta=\frac{\pi}{2}$, therefore, we have:
$i=1\left[\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right]$
According to theorem, we have:
$z_{0}=\sqrt[3]{1}\left[\cos \left(\frac{\pi / 2}{3}+\frac{2(0) \pi}{3}\right)+i \sin \left(\frac{\pi / 2}{3}+\frac{2(0) \pi}{3}\right)\right]$
$=\left[\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right]=\frac{\sqrt{3}}{2}+i\left(\frac{1}{2}\right)$
$z_{1}=\sqrt[3]{1}\left[\cos \left(\frac{\pi / 2}{3}+\frac{2(1) \pi}{3}\right)+i \sin \left(\frac{\pi / 2}{3}+\frac{2(1) \pi}{3}\right)\right]$
$=\left[\cos \left(\frac{\pi}{6}+\frac{2 \pi}{3}\right)+i \sin \left(\frac{\pi}{6}+\frac{2 \pi}{3}\right)\right]$
$=\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)=-\frac{\sqrt{3}}{2}+i\left(\frac{1}{2}\right)$
$z_{2}=\sqrt[3]{1}\left[\cos \left(\frac{\pi / 2}{3}+\frac{2(2) \pi}{3}\right)+i \sin \left(\frac{\pi / 2}{3}+\frac{2(2) \pi}{3}\right)\right]$
$=\left[\cos \left(\frac{\pi}{6}+\frac{4 \pi}{3}\right)+i \sin \left(\frac{\pi}{6}+\frac{4 \pi}{3}\right)\right]$
$=\cos \left(\frac{3 \pi}{2}\right)+i \sin \left(\frac{3 \pi}{2}\right)=0+i(-1)=-i$
Graphically, these three roots all lie on the same circle (on the complex plane) with radius 1 (magniture of each z_{k} for this example), and they are equally spaced from each other.

Example: Find all the 5 th roots of the complex number $w=1-\sqrt{3} i$. Write your solution in rectangular form, if possible.
Ans: We are looking for all five of the (complex) solutions to the equation $z^{5}=w$. We first express w in polar form:
$|w|=\sqrt{(1)^{2}+(-\sqrt{3})^{2}}=\sqrt{1+3}=2$

The sides of the triangle formed by the terminal side of w and the x and y is in the ratio of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle. So the reference angle of w is $\frac{\pi}{3}$, so the argument of w is $\theta=\frac{5 \pi}{3}$.
Therefore, $w=2\left[\cos \left(\frac{5 \pi}{3}\right)+i \sin \left(\frac{5 \pi}{3}\right)\right]$
Using the formula, we know there are five unique solutions to the equation:
$z^{5}=w=2\left[\cos \left(\frac{5 \pi}{3}\right)+i \sin \left(\frac{5 \pi}{3}\right)\right]$, these solutions are:
$z_{0}=\sqrt[5]{2}\left[\cos \left(\frac{5 \pi / 3}{5}+\frac{2(0) \pi}{5}\right)+i \sin \left(\frac{5 \pi / 3}{5}+\frac{2(0) \pi}{5}\right)\right]$
$=\sqrt[5]{2}\left[\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)\right]=\sqrt[5]{2}\left[\frac{1}{2}+i\left(\frac{\sqrt{3}}{2}\right)\right]=\frac{\sqrt[5]{2}}{2}+i\left(\frac{\sqrt[5]{2} \cdot \sqrt{3}}{2}\right)$
$z_{1}=\sqrt[5]{2}\left[\cos \left(\frac{5 \pi / 3}{5}+\frac{2(1) \pi}{5}\right)+i \sin \left(\frac{5 \pi / 3}{5}+\frac{2(1) \pi}{5}\right)\right]$
$=\sqrt[5]{2}\left[\cos \left(\frac{\pi}{3}+\frac{2 \pi}{5}\right)+i \sin \left(\frac{\pi}{3}+\frac{2 \pi}{5}\right)\right]=\sqrt[5]{2}\left[\cos \left(\frac{11 \pi}{15}\right)+i \sin \left(\frac{11 \pi}{15}\right)\right]$
$z_{2}=\sqrt[5]{2}\left[\cos \left(\frac{5 \pi / 3}{5}+\frac{2(2) \pi}{5}\right)+i \sin \left(\frac{5 \pi / 3}{5}+\frac{2(2) \pi}{5}\right)\right]$
$=\sqrt[5]{2}\left[\cos \left(\frac{\pi}{3}+\frac{4 \pi}{5}\right)+i \sin \left(\frac{\pi}{3}+\frac{4 \pi}{5}\right)\right]=\sqrt[5]{2}\left[\cos \left(\frac{17 \pi}{15}\right)+i \sin \left(\frac{17 \pi}{15}\right)\right]$
$z_{3}=\sqrt[5]{2}\left[\cos \left(\frac{5 \pi / 3}{5}+\frac{2(3) \pi}{5}\right)+i \sin \left(\frac{5 \pi / 3}{5}+\frac{2(3) \pi}{5}\right)\right]$
$=\sqrt[5]{2}\left[\cos \left(\frac{\pi}{3}+\frac{6 \pi}{5}\right)+i \sin \left(\frac{\pi}{3}+\frac{6 \pi}{5}\right)\right]=\sqrt[5]{2}\left[\cos \left(\frac{23 \pi}{15}\right)+i \sin \left(\frac{23 \pi}{15}\right)\right]$
$z_{4}=\sqrt[5]{2}\left[\cos \left(\frac{5 \pi / 3}{5}+\frac{2(4) \pi}{5}\right)+i \sin \left(\frac{5 \pi / 3}{5}+\frac{2(4) \pi}{5}\right)\right]$
$=\sqrt[5]{2}\left[\cos \left(\frac{\pi}{3}+\frac{8 \pi}{5}\right)+i \sin \left(\frac{\pi}{3}+\frac{8 \pi}{5}\right)\right]=\sqrt[5]{2}\left[\cos \left(\frac{29 \pi}{15}\right)+i \sin \left(\frac{29 \pi}{15}\right)\right]$
While we can use special triangle ratio to turn z_{0} into rectangular form, it will not be easy to express the other z_{1}, z_{2}, z_{3}, or z_{4} into rectangular form, so we leave the answer in polar form.

Each of the five five roots lie on the circle (on the complex plane) with radius equal to $\sqrt[5]{2}$, and equally spaced from each other.

Let $n \geq 1$ be a positive integer, we say that an \mathbf{n}-th root of unity is a (complex) number z that solves the equation $z^{n}=1$. From the theorem we just discussed, for each n, there are n many n-th roots of unity.

Example: Find all the 6 th roots of unity. Express your answers in rectangular form if possible.

Ans: We are looking for all the (complex) solutions of the equation $z^{6}=1$. Writing 1 in polar form, we have:
$1=1+0 i=1[\cos (0)+i \sin (0)]$
The six roots of unity are given by:

$$
\begin{aligned}
& z_{0}=1\left[\cos \left(\frac{0}{6}+\frac{2(0) \pi}{6}\right)+i \sin \left(\frac{0}{6}+\frac{2(0) \pi}{6}\right)\right]=\cos (0)+i \sin (0)=1 \\
& z_{1}=1\left[\cos \left(\frac{0}{6}+\frac{2(1) \pi}{6}\right)+i \sin \left(\frac{0}{6}+\frac{2(1) \pi}{6}\right)\right] \\
& =\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)=\frac{1}{2}+i\left(\frac{\sqrt{3}}{2}\right) \\
& z_{2}=1\left[\cos \left(\frac{0}{6}+\frac{2(2) \pi}{6}\right)+i \sin \left(\frac{0}{6}+\frac{2(2) \pi}{6}\right)\right] \\
& =\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}+i\left(\frac{\sqrt{3}}{2}\right) \\
& z_{3}=1\left[\cos \left(\frac{0}{6}+\frac{2(3) \pi}{6}\right)+i \sin \left(\frac{0}{6}+\frac{2(3) \pi}{6}\right)\right] \\
& =\cos (\pi)+i \sin (\pi)=-1+0 i=-1
\end{aligned}
$$

$$
z_{4}=1\left[\cos \left(\frac{0}{6}+\frac{2(4) \pi}{6}\right)+i \sin \left(\frac{0}{6}+\frac{2(4) \pi}{6}\right)\right]
$$

$$
=\cos \left(\frac{4 \pi}{3}\right)+i \sin \left(\frac{4 \pi}{3}\right)=-\frac{1}{2}+i\left(-\frac{\sqrt{3}}{2}\right)=-\frac{1}{2}-i\left(\frac{\sqrt{3}}{2}\right)
$$

$$
z_{5}=1\left[\cos \left(\frac{0}{6}+\frac{2(5) \pi}{6}\right)+i \sin \left(\frac{0}{6}+\frac{2(5) \pi}{6}\right)\right]
$$

$$
=\cos \left(\frac{5 \pi}{3}\right)+i \sin \left(\frac{5 \pi}{3}\right)=\frac{1}{2}+i\left(-\frac{\sqrt{3}}{2}\right)=\frac{1}{2}-i\left(\frac{\sqrt{3}}{2}\right)
$$

The six solutions are equally spaced on the unit circle.

