
We can think of a complex number a+ bi as the point (a, b) in the xy plane. In
this representation, a is the x coordinate and b is the y coordinate.The x−axis
is called the real axis and the y−axis the imaginary axis, and we refer to this
plane as the complex plane.

Example: The complex number 3− 2i can be viewed as the point (3,−2) in the
complex plane.

Given a complex number z = x+ yi, we define the magnitude of z, written |z|,
as:

|z| =
√
x2 + y2.

Graphically, the magniture of z is the distance between z (viewed as a point on
the xy plane) and the origin.
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Graphically, if we add two complex number, we are adding the two numbers by
treating them as vectors and adding like vector addition.



For example, Let z = 5 + 2i, w = 1 + 6i, then

z + w = (5 + 2i) + (1 + 6i) = (5 + 1) + (2 + 6)i = 6 + 8i

In order to interpret multiplication of two complex numbers, let’s look again at
the complex number represented as a point on the complex plane. This time,
we let r =

√
x2 + y2 be the magnitude of z. Let 0 ≤ θ < 2π be the angle in

standard position with z being its terminal point. We call θ the argument of
the complex number z:
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By definition of sine and cosine, we have

cos(θ) =
x

r
⇒ x = r cos(θ)

sin(θ) =
y

r
⇒ y = r sin(θ)

We have obtained the polar representation of a complex number:

Suppose z = x + yi is a complex number with (x, y) in rectangular coordinate.
Let r = |z| =

√
x2 + y2, let 0 ≤ θ < 2π be an angle in standard position whose

terminal point is (x, y) (in other words, (r, θ) is the polar coordinate of (x, y)),
then

z = x+ yi = r cos(θ) + r(sin(θ))i = r [cos(θ) + i sin(θ)]

Example: Write −2
√

3− 2i in polar form:

Ans: r =
√

(−2
√

3)2 + (−2)2 =
√

(4 · 3) + 4 =
√

12 + 4 = 4
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z = −2
√
3− 2i

θ =
7π

6

The sides of the triangle formed has length 2, 2
√

3, and 4. This is the ratio of a

30◦ − 60◦ − 90◦ triangle, meaning that θ =
7π

6
Therefore,

z = −2
√

3− 2i = 4

[
cos

(
7π

6

)
+ i sin

(
7π

6

)]



Example: Express the (polar form) complex number z = 3

[
cos

(
2π

3

)
+ i sin

(
2π

3

)]
as a complex number in rectangular form.

Ans: cos

(
2π

3

)
= −1

2
, and, sin

(
2π

3

)
=

√
3

2
, we have:

z = 3

[
cos

(
2π

3

)
+ i sin

(
2π

3

)]
= 3

[
−1

2
+ i

√
3

2

]
= −3

2
+

3
√

3

2
i



Let z1 = r1 (cos(θ1) + i sin(θ1)), let z2 = r2 (cos(θ2) + i sin(θ2)), then,

z1 · z2 = [r1 (cos(θ1) + i sin(θ1))] [r2 (cos(θ2) + i sin(θ2))]

= r1r2 [(cos(θ1) + i sin(θ1)) (cos(θ2) + i sin(θ2))]

= r1r2
[
cos(θ1) cos(θ2) + i cos(θ1) sin(θ2) + i sin(θ1) cos(θ2) + i2 sin(θ1) sin(θ2)

]
= r1r2 [cos(θ1) cos(θ2) + i cos(θ1) sin(θ2) + i sin(θ1) cos(θ2)− sin(θ1) sin(θ2)]

= r1r2 [(cos(θ1) cos(θ2)− sin(θ1) sin(θ2)) + i (cos(θ1) sin(θ2) + sin(θ1) cos(θ2))]

= r1r2 [(cos(θ1) cos(θ2)− sin(θ1) sin(θ2)) + i (sin(θ1) cos(θ2) + cos(θ1) sin(θ2))]

= r1r2 [cos(θ1 + θ2) + i sin(θ1 + θ2)] (double angle identity)

We have just proved the following formula:

Let z1 = r1 [cos(θ1) + i sin(θ1)], z2 = r2 [cos(θ2) + i sin(θ2)], be complex numbers
in polar form, then

z1z2 = r1r2 [cos(θ1 + θ2) + i sin(θ1 + θ2)]

This formula tells us that, goemetrically, to multiply two complex numbers is to
multiply their magniture and add their argument. In other words, to multiply
z1 = r1(cos(θ1) + i sin(θ1)) and z2 = r2(cos(θ2) + i sin(θ2)), we multiply their
magniture, r2 and r2, and add their argument, θ1 and θ2. The result (product)
is a complex number whose magnitude is r1r2 and whose argument is θ1 + θ2.

We can use a similar method to prove the following formula for dividing two
complex numbers in polar form:

Let z1 = r1 [cos(θ1) + i sin(θ1)], let z2 = r2 [cos(θ2) + i sin(θ2)], z2 6= 0, be complex
numbers in polar form, then
z1
z2

=
r1
r2

[cos(θ1 − θ2) + i sin(θ1 − θ2)]



Example: Let z1 = 2
[
cos
(π

4

)
+ i sin

(π
4

)]
, z2 = 5

[
cos

(
4π

3

)
+ i sin

(
4π

3

)]
then by the formula,

z1z2 = (2)(5)

[
cos

(
π

4
+

4π

3

)
+ i sin

(
π

4
+

4π

3

)]
= 10

[
cos

(
19π

12

)
+ i sin

(
19π

12

)]
Example: Let z = r (cos(θ) + i sin(θ)), find z2 and z3

Ans: Using the formula, z2 = z · z = [r (cos(θ) + i sin(θ))] [r (cos(θ) + i sin(θ))]

= r · r [cos(θ + θ) + i sin(θ + θ)] = r2 [cos(2θ) + i sin(2θ)]

Similarly, to find z3, we note that z3 = z2 · z
=
[
r2 (cos(2θ) + i sin(2θ))

]
[r (cos(θ) + i sin(θ))]

= r2 · r [cos(2θ + θ) + i sin(2θ + θ)] = r3 [cos(3θ) + i sin(3θ)]

This pattern tells us that, each time we raise a complex number z to an integer
power, n, we raise its magniture, r, to the n−th power, and multiply its argument,
θ, by n. This is the:

De Moivre’s Theorem:

Suppose z = r [cos(θ) + i sin(θ)] is a complex number is polar form, and n ≥ 1 is
a positive integer, then:

zn = rn [cos(nθ) + i sin(nθ)]

Example: Let z =

√
3

2
+

1

2
i be a complex number in rectangular form. Find z17
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√
3
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Ans: We first write z in polar form. We note that θ, the argument of z, is the

angle of the special 30◦ − 60◦ − 90◦ triangle, so θ =
π

6

r = |z| =
√
x2 + y2 =

√√√√(√3

2

)2

+

(
1

2

)2

=

√
3

4
+

1

2
=
√

1 = 1



Therefore, z =

√
3

2
+

1

2
i = 1

[
cos
(π

6

)
+ i sin

(π
6

)]
Using De Moivre’s Theorem, we have:

z17 = 117
[
cos
(

17 · π
6

)
+ i sin

(
17 · π

6

)]
= 1

[
cos

(
17π

6

)
+ i sin

(
17π

6

)]
=

[
cos

(
2π +

5π

6

)
+ i sin

(
2π +

5π

6

)]
=

[
cos

(
5π

6

)
+ i sin

(
5π

6

)]
= −
√

3

2
+

1

2
i

Example: Let z = −1 + i, find z14

Ans: We again first write z in polar form:
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θ =
3π

4

r
= √

2

1

1

z = −1 + i

We find r = |z| =
√
x2 + y2 =

√
(−1)2 + (1)2 =

√
2

The x− and y− coordinate of z forms an isoceles right triangle with the x−axis,

so the reference angle of z is
π

4
, meaning that the argument of z, θ, is θ =

3π

4
.

We have:

z = −1 + i =
√

2

[
cos

(
3π

4

)
+ i sin

(
3π

4

)]
Using De Moivre’s Theorem, we have:

z14 =
(√

2
)14 [

cos

(
14 · 3π

4

)
+ i sin

(
14 · 3π

4

)]
= (2)7

[
cos

(
21π

2

)
+ i sin

(
21π

2

)]
= 128

[
cos
(

10π +
π

2

)
+ i sin

(
10π +

π

2

)]
= 128

[
cos
(π

2

)
+ i sin

(π
2

)]
= 128 [0 + i(1)] = 128i

We know the meaning of the n-th root of real numbers like
√

5 or 3
√

13. With the
introduction of complex numbers, even numbers like

√
−3 can now be expressed

as complex numbers. But what about numbers like the square root or cube roots
of complex numbers? For example, what is the meaning of

√
i or 3
√

1 + i, and
does it exist?



By definition of the n−th root, we know that if b = n
√
a, this means that bn = a.

So if w is a complex number, if we say z = n
√
w, we are looking for a number

z with the property that zn = w. If we write w as a complex number in polar
form, then De Movire’s Theorem allows us to find all the n−th roots of w.

The n-th roots of a complex number:

Let n ≥ 1 be a positive integer, let w = r [cos(θ) + i sin(θ)] be a complex number
in polar form with r > 0 be the magniture of w, then the equation zn = w has n
distinct (complex numbers) solutions. Each solution zk is of the form:

zk = n
√
r

[
cos

(
θ

n
+

2kπ

n

)
+ i sin

(
θ

n
+

2kπ

n

)]
,

where k = 0, 1, 2, 3, . . . , n− 2, n− 1

The above theorem tells us that each complex number w always has n distinct
(complex) n−th roots.

Example: Find all the cube roots of i. In other words, find all the (complex)
solutions of the equation: z3 = i. Write your answer in rectangular form if
possible.

Ans: According to the theorem just mentioned, there will be three distinct com-
plex numbers z that satisfies the equation. In order to apply the theorem, we
need to represent i in polar form. Notice that |i| = 1, and the terminal side of i

is the y− axis, with an argument of θ =
π

2
, therefore, we have:

i = 1
[
cos
(π

2

)
+ i sin

(π
2

)]
According to theorem, we have:

z0 =
3
√

1

[
cos

(
π/2

3
+

2(0)π

3

)
+ i sin

(
π/2

3
+

2(0)π

3

)]
=
[
cos
(π

6

)
+ i sin

(π
6

)]
=

√
3

2
+ i

(
1

2

)
z1 =

3
√

1

[
cos

(
π/2

3
+

2(1)π

3

)
+ i sin

(
π/2

3
+

2(1)π

3

)]
=

[
cos

(
π

6
+

2π

3

)
+ i sin

(
π

6
+

2π

3

)]
= cos

(
5π

6

)
+ i sin

(
5π

6

)
= −
√

3

2
+ i

(
1

2

)
z2 =

3
√

1

[
cos

(
π/2

3
+

2(2)π

3

)
+ i sin

(
π/2

3
+

2(2)π

3

)]



=

[
cos

(
π

6
+

4π

3

)
+ i sin

(
π

6
+

4π

3

)]
= cos

(
3π

2

)
+ i sin

(
3π

2

)
= 0 + i(−1) = −i

Graphically, these three roots all lie on the same circle (on the complex plane)
with radius 1 (magniture of each zk for this example), and they are equally spaced
from each other.
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Example: Find all the 5th roots of the complex number w = 1−
√

3i. Write your
solution in rectangular form, if possible.

Ans: We are looking for all five of the (complex) solutions to the equation z5 = w.
We first express w in polar form:

|w| =
√

(1)2 +
(
−
√

3
)2

=
√

1 + 3 = 2



x

yi

w = 1−
√
3i

π

3

√
3

1
θ =

5π

3

The sides of the triangle formed by the terminal side of w and the x and y is in

the ratio of a 30◦ − 60◦ − 90◦ triangle. So the reference angle of w is
π

3
, so the

argument of w is θ =
5π

3
.

Therefore, w = 2

[
cos

(
5π

3

)
+ i sin

(
5π

3

)]
Using the formula, we know there are five unique solutions to the equation:

z5 = w = 2

[
cos

(
5π

3

)
+ i sin

(
5π

3

)]
, these solutions are:

z0 =
5
√

2

[
cos

(
5π/3

5
+

2(0)π

5

)
+ i sin

(
5π/3

5
+

2(0)π

5

)]
=

5
√

2
[
cos
(π

3

)
+ i sin

(π
3

)]
=

5
√

2

[
1

2
+ i

(√
3

2

)]
=

5
√

2

2
+ i

(
5
√

2 ·
√

3

2

)

z1 =
5
√

2

[
cos

(
5π/3

5
+

2(1)π

5

)
+ i sin

(
5π/3

5
+

2(1)π

5

)]
=

5
√

2

[
cos

(
π

3
+

2π

5

)
+ i sin

(
π

3
+

2π

5

)]
=

5
√

2

[
cos

(
11π

15

)
+ i sin

(
11π

15

)]

z2 =
5
√

2

[
cos

(
5π/3

5
+

2(2)π

5

)
+ i sin

(
5π/3

5
+

2(2)π

5

)]
=

5
√

2

[
cos

(
π

3
+

4π

5

)
+ i sin

(
π

3
+

4π

5

)]
=

5
√

2

[
cos

(
17π

15

)
+ i sin

(
17π

15

)]



z3 =
5
√

2

[
cos

(
5π/3

5
+

2(3)π

5

)
+ i sin

(
5π/3

5
+

2(3)π

5

)]
=

5
√

2

[
cos

(
π

3
+

6π

5

)
+ i sin

(
π

3
+

6π

5

)]
=

5
√

2

[
cos

(
23π

15

)
+ i sin

(
23π

15

)]

z4 =
5
√

2

[
cos

(
5π/3

5
+

2(4)π

5

)
+ i sin

(
5π/3

5
+

2(4)π

5

)]
=

5
√

2

[
cos

(
π

3
+

8π

5

)
+ i sin

(
π

3
+

8π

5

)]
=

5
√

2

[
cos

(
29π

15

)
+ i sin

(
29π

15

)]
While we can use special triangle ratio to turn z0 into rectangular form, it will
not be easy to express the other z1, z2, z3, or z4 into rectangular form, so we leave
the answer in polar form.

Each of the five five roots lie on the circle (on the complex plane) with radius
equal to 5

√
2, and equally spaced from each other.

x

yi

w = 1−
√
3i

z0
z1

z2

z3

z4

Let n ≥ 1 be a positive integer, we say that an n-th root of unity is a (complex)
number z that solves the equation zn = 1. From the theorem we just discussed,
for each n, there are n many n−th roots of unity.

Example: Find all the 6th roots of unity. Express your answers in rectangular
form if possible.

Ans: We are looking for all the (complex) solutions of the equation z6 = 1.
Writing 1 in polar form, we have:



1 = 1 + 0i = 1 [cos(0) + i sin(0)]

The six roots of unity are given by:

z0 = 1

[
cos

(
0

6
+

2(0)π

6

)
+ i sin

(
0

6
+

2(0)π

6

)]
= cos(0) + i sin(0) = 1

z1 = 1

[
cos

(
0

6
+

2(1)π

6

)
+ i sin

(
0

6
+

2(1)π

6

)]
= cos

(π
3

)
+ i sin

(π
3

)
=

1

2
+ i

(√
3

2

)

z2 = 1

[
cos

(
0

6
+

2(2)π

6

)
+ i sin

(
0

6
+

2(2)π

6

)]
= cos

(
2π

3

)
+ i sin

(
2π

3

)
= −1

2
+ i

(√
3

2

)

z3 = 1

[
cos

(
0

6
+

2(3)π

6

)
+ i sin

(
0

6
+

2(3)π

6

)]
= cos (π) + i sin (π) = −1 + 0i = −1

z4 = 1

[
cos

(
0

6
+

2(4)π

6

)
+ i sin

(
0

6
+

2(4)π

6

)]
= cos

(
4π

3

)
+ i sin

(
4π

3

)
= −1

2
+ i

(
−
√

3

2

)
= −1

2
− i

(√
3

2

)

z5 = 1

[
cos

(
0

6
+

2(5)π

6

)
+ i sin

(
0

6
+

2(5)π

6

)]
= cos

(
5π

3

)
+ i sin

(
5π

3

)
=

1

2
+ i

(
−
√

3

2

)
=

1

2
− i

(√
3

2

)
The six solutions are equally spaced on the unit circle.
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