- 1. Change from degree to radian:
- a. 125°
- b. -32°
- c. 450°
- d. -865°
- 2. Change from radian to degree:
- a. $\frac{\pi}{6}$
- b. $-\frac{3\pi}{5}$
- c. $\frac{\pi}{2}$
- d. $-\frac{4\pi}{7}$
- e. $-\frac{23\pi}{6}$
- f. $\frac{20}{7}$
- g. -1
- h. 3.14
- 3. Find the coordinate of the terminal point P:

a.

b.

c.

d.

f.

g.

h.

i.

j.

4. Find the coordinate of the terminal point P of the given angle θ with the circle of radius r:

a.
$$\theta = \frac{2\pi}{3}, \ r = \frac{1}{2}$$

b.
$$\theta = \frac{5\pi}{6}, \ r = 1$$

c.
$$\theta = \frac{7\pi}{3}, \ r = 20$$

d.
$$\theta = -\frac{21\pi}{4}$$
, $r = 10$

e.
$$\theta = -\frac{\pi}{2}, \ r = 8$$

f.
$$\theta = \frac{65\pi}{3}, r = 12$$

g.
$$\theta = -\frac{37\pi}{6}$$
, $r = \frac{3}{4}$

h.
$$\theta = \frac{59\pi}{3}, \ r = \sqrt{6}$$

i.
$$\theta = -\frac{82\pi}{3}, \ r = 5$$

j.
$$\theta = \frac{45\pi}{2}, \ r = 9$$

k.
$$\theta = \frac{53\pi}{4}, \ r = 1$$

1.
$$\theta = -\frac{5\pi}{6}$$
, $r = 3$

m.
$$\theta = -27\pi, \ r = 6$$

5. Find the **exact value** of the following:

a.
$$\sin(0)$$

b.
$$\cos(0)$$

c.
$$tan(0)$$

$$d. \cot(0)$$

$$e. \sec(0)$$

f.
$$\csc(0)$$

g.
$$\cos\left(-\frac{2\pi}{3}\right)$$

h.
$$\cos\left(\frac{2\pi}{3}\right)$$

i.
$$\sin\left(-\frac{2\pi}{3}\right)$$

j.
$$\sin\left(\frac{2\pi}{3}\right)$$

k.
$$\sec\left(\frac{13\pi}{6}\right)$$

l.
$$\csc\left(-\frac{13\pi}{3}\right)$$

m.
$$\tan\left(\frac{17\pi}{6}\right)$$

n.
$$\cot\left(-\frac{29\pi}{2}\right)$$

o.
$$\tan\left(-\frac{29\pi}{2}\right)$$

p.
$$\cos\left(\frac{15\pi}{4}\right)$$

q.
$$\sin\left(-\frac{25\pi}{6}\right)$$

r.
$$\sin\left(\frac{\pi}{6}\right)$$

s.
$$\cos\left(\frac{\pi}{6}\right)$$

t.
$$\sin\left(-\frac{\pi}{3}\right)$$

u.
$$\cos\left(-\frac{\pi}{3}\right)$$

v.
$$\sin\left(\frac{\pi}{2}\right)$$

w.
$$\cos\left(\frac{\pi}{2}\right)$$

x.
$$\tan\left(\frac{\pi}{2}\right)$$

y.
$$\csc\left(\frac{\pi}{2}\right)$$

z.
$$\sin\left(\frac{3\pi}{2}\right)$$

aa.
$$\cos\left(-\frac{3\pi}{4}\right)$$

bb.
$$\tan\left(\frac{5\pi}{4}\right)$$

cc.
$$\cot\left(-\frac{7\pi}{4}\right)$$

dd. $\cos(\pi)$

ee. $\sin(\pi)$

ff.
$$\cos\left(-\frac{11\pi}{3}\right)$$

gg.
$$\sin\left(-\frac{11\pi}{3}\right)$$

hh.
$$\tan\left(\frac{11\pi}{3}\right)$$

ii.
$$\cos\left(\frac{37\pi}{6}\right)$$

jj.
$$\sin\left(\frac{37\pi}{6}\right)$$

kk.
$$\tan\left(\frac{37\pi}{6}\right)$$

- 6. Suppose θ is an angle in standard position and P is the terminal point of θ , find the value of the six trigonometric functions of θ :
- a. P = (1, -3)
- b. $P = \left(\frac{1}{3}, \frac{\sqrt{2}}{3}\right)$
- c. $P = \left(-\frac{\sqrt{3}}{4}, -\sqrt{3}\right)$
- d. $P = \left(-2, \sqrt{2}\right)$
- 7. Find the value of the other five trigonometric functions of θ from the information given:
- a. $\cos \theta = \frac{2}{5}$, terminal point of θ is in first quadrant.
- b. $\sin \theta = \frac{\sqrt{3}}{4}$, terminal point of θ is in second quadrant.
- c. $\tan \theta = -\frac{1}{5}$, terminal point of θ is in second quadrant.
- d. $\csc \theta = -\frac{7}{2}$, terminal point of θ is in fourth quadrant.
- e. $\sec \theta = 2$, terminal point of θ is in fourth quadrant.
- f. $\cot \theta = \frac{-\sqrt{3}}{5}$, terminal point of θ is in second quadrant.
- g. $\cos \theta = -\frac{1}{\sqrt{3}}$, terminal point of θ is in second quadrant.
- h. $\cos \theta = \frac{\sqrt{5}}{6}$, terminal point of θ is in fourth quadrant.
- 8. If $\sin(\theta) = \frac{2}{3}$, $\sin(-\theta) = ?$
- 9. If $\cos(\theta) = \frac{1}{4}$, $\cos(-\theta) = ?$
- 10. If $tan(\theta) = \sqrt{2}$, $tan(-\theta) = ?$
- 11. If $\sin(\theta) = \frac{1}{3}$, $\sin(4\pi \theta) = ?$
- 12. If $\cos(\theta) = -\frac{4}{5}$, $\cos(-\theta 6\pi) = ?$