Graphing Exercise 1. For the given function f, find its amplitude and period, and graph the function. On your graph, for at least one cycle, indicate the x-coordinate of where the the maximum and minimum value(s) occurs, and where the function intercepts its neutral position. a. $$f(x) = -2\sin(x+1)$$. Ans: Start Point: x=-1; amplitude = 2; period = 2π ; End Point: $x=-1+2\pi$; neutral position at $x=-1+\pi$; min at $x=-1+\frac{\pi}{2}$; max at $x=-1+\frac{3\pi}{2}$; b. $$f(x) = \sin(-x+1)$$. Ans: Start Point: x=1; amplitude = 1; period = 2π ; End Point: $x=1+2\pi$; neutral position at $x=1+\pi$; min at $x=1+\frac{\pi}{2}$; max at $x=1+\frac{3\pi}{2}$; c. $$f(x) = 2\sin(\pi x + 1)$$. Ans: Start Point: $x = -\frac{1}{\pi}$; amplitude = 2; period = 2; End Point: $x = -\frac{1}{\pi} + 2$; neutral position at $x = -\frac{1}{\pi} + 1$; min at $x = -\frac{1}{\pi} + \frac{3}{2}$; max at $x = -\frac{1}{\pi} + \frac{1}{2}$; d. $$f(x) = -2\sin(2x - \pi) - 3$$. Ans: Start Point: $x = \frac{\pi}{2}$; amplitude = 2; period = π ; End Point: $x = \frac{\pi}{2} + \pi = \frac{3\pi}{2}$; neutral position at $x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$; min at $x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$; max at $x = \frac{5\pi}{4}$; e. $$f(x) = \sin(\frac{x}{2} - 1)$$. Ans: Start Point: x=2; amplitude = 1; period = 4π ; End Point: $x=2+4\pi$; neutral position at $x=2+2\pi$; min at $x=2+3\pi$; max at $x=2+\pi$; f. $$f(x) = \sin\left(-\frac{x}{\pi} + 1\right) - 1$$. Ans: Start Point: $x = \pi$; amplitude = 1; period = $2\pi^2$; End Point: $x = \pi + 2\pi^2$; neutral position at $x = \pi + \frac{\pi^2}{2}$; min at $x = \pi + \frac{\pi^2}{4}$; max at $x = \pi + \frac{3\pi^2}{4}$; g. $$f(x) = 2\sin\left(\frac{\pi x}{2} + 2\right)$$. Ans: Start Point: $x = -\frac{4}{\pi}$; amplitude = 2; period = 4; End Point: $x = -\frac{4}{\pi} + 4$; neutral position at $x = -\frac{4}{\pi} + 2$; min at $x = -\frac{4}{\pi} + 3$; max at $x = -\frac{4}{\pi} + 1$; h. $$f(x) = \cos(-x+1) + 2$$. Ans: Start Point: x=1; amplitude = 1; period = 2π ; End Point: $x=1+2\pi$; neutral positions at $x=1+\frac{\pi}{2}$ and $x=1+\frac{3\pi}{2}$; min at $x=1+\pi$; i. $$f(x) = -2\cos\left(\frac{\pi x}{3} - \pi\right)$$. Ans: Start Point: x = 3; amplitude = 2; period = 6; End Point: x = 9; neutral positions at $x = \frac{9}{2}$ and $x = \frac{15}{2}$; max at x = 6 j. $$f(x) = \cos(-x - 2) - 1$$. Ans: Start Point: x=-2; amplitude = 1; period = 2π ; End Point: $x=2+2\pi$; neutral positions at $x=-2+\frac{\pi}{2}$ and $x=-2+\frac{3\pi}{2}$; min at $x=-2+\pi$; k. $$f(x) = \cos\left(\frac{2x}{3} - 1\right) + 2$$. Ans: Start Point: $x = \frac{3}{2}$; amplitude = 1; period = 3π ; End Point: $x = \frac{3}{2} + 3\pi$; neutral positions at $x = \frac{3}{2} + \frac{3\pi}{4}$ and at $x = \frac{3}{2} + \frac{9\pi}{4}$; min at $x = \frac{3+3\pi}{2}$; 1. $$f(x) = -\cos\left(-\frac{x}{2} + 1\right)$$. Ans: Start Point: x=2; amplitude = 1; period = 4π ; End Point: $x=2+4\pi$; neutral positions at $x=2+\pi$ and $x=2+3\pi$; max at $x=2+2\pi$; m. $f(x) = \cos(-3x + 1)$. Ans: Start Point: $x = \frac{1}{3}$; amplitude = 1; period = $\frac{2\pi}{3}$; End Point: $x = \frac{1}{3} + \frac{2\pi}{3}$; neutral positions at $x = \frac{1}{3} + \frac{\pi}{6}$ and $x = \frac{1}{3} + \frac{\pi}{2}$; min at $x = \frac{1+\pi}{3}$; n. $f(x) = \cos(x - \pi)$. Ans: Start Point: $x=\pi$; amplitude = 1; period = 2π ; End Point: $x=3\pi$; neutral positions at $x=\frac{3\pi}{2}$ and $x=\frac{5\pi}{2}$; min at $x=2\pi$; 2. Let $f(x) = \tan(x - 4)$. a. Find the period of f. Ans: $p = \pi$ b. Graph f. In your graph, for at least one cycle of f, indicate the coordinates of the x intercept, and the location of the vertical asymptotes. Ans: 3. Let $f(x) = 2\sec(\pi x + 1)$. a. Find the period of f. Ans: p = 2 b. Graph f. In your graph, for at least one cycle of f, indicate the coordinates of the x maximum and minimum values of f, and the location of the vertical asymptotes. Ans: