## Graphing Exercise

1. For the given function f, find its amplitude and period, and graph the function. On your graph, for at least one cycle, indicate the x-coordinate of where the the maximum and minimum value(s) occurs, and where the function intercepts its neutral position.

a. 
$$f(x) = -2\sin(x+1)$$
.

Ans: Start Point: x=-1; amplitude = 2; period =  $2\pi$ ; End Point:  $x=-1+2\pi$ ; neutral position at  $x=-1+\pi$ ; min at  $x=-1+\frac{\pi}{2}$ ; max at  $x=-1+\frac{3\pi}{2}$ ;



b. 
$$f(x) = \sin(-x+1)$$
.

Ans: Start Point: x=1; amplitude = 1; period =  $2\pi$ ; End Point:  $x=1+2\pi$ ; neutral position at  $x=1+\pi$ ; min at  $x=1+\frac{\pi}{2}$ ; max at  $x=1+\frac{3\pi}{2}$ ;



c. 
$$f(x) = 2\sin(\pi x + 1)$$
.

Ans: Start Point:  $x = -\frac{1}{\pi}$ ; amplitude = 2; period = 2; End Point:  $x = -\frac{1}{\pi} + 2$ ; neutral position at  $x = -\frac{1}{\pi} + 1$ ; min at  $x = -\frac{1}{\pi} + \frac{3}{2}$ ; max at  $x = -\frac{1}{\pi} + \frac{1}{2}$ ;



d. 
$$f(x) = -2\sin(2x - \pi) - 3$$
.

Ans: Start Point:  $x = \frac{\pi}{2}$ ; amplitude = 2; period =  $\pi$ ; End Point:  $x = \frac{\pi}{2} + \pi = \frac{3\pi}{2}$ ; neutral position at  $x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$ ; min at  $x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$ ; max at  $x = \frac{5\pi}{4}$ ;



e. 
$$f(x) = \sin(\frac{x}{2} - 1)$$
.

Ans: Start Point: x=2; amplitude = 1; period =  $4\pi$ ; End Point:  $x=2+4\pi$ ; neutral position at  $x=2+2\pi$ ; min at  $x=2+3\pi$ ; max at  $x=2+\pi$ ;



f. 
$$f(x) = \sin\left(-\frac{x}{\pi} + 1\right) - 1$$
.

Ans: Start Point:  $x = \pi$ ; amplitude = 1; period =  $2\pi^2$ ; End Point:  $x = \pi + 2\pi^2$ ; neutral position at  $x = \pi + \frac{\pi^2}{2}$ ; min at  $x = \pi + \frac{\pi^2}{4}$ ; max at  $x = \pi + \frac{3\pi^2}{4}$ ;



g. 
$$f(x) = 2\sin\left(\frac{\pi x}{2} + 2\right)$$
.

Ans: Start Point:  $x = -\frac{4}{\pi}$ ; amplitude = 2; period = 4; End Point:  $x = -\frac{4}{\pi} + 4$ ; neutral position at  $x = -\frac{4}{\pi} + 2$ ; min at  $x = -\frac{4}{\pi} + 3$ ; max at  $x = -\frac{4}{\pi} + 1$ ;



h. 
$$f(x) = \cos(-x+1) + 2$$
.

Ans: Start Point: x=1; amplitude = 1; period =  $2\pi$ ; End Point:  $x=1+2\pi$ ; neutral positions at  $x=1+\frac{\pi}{2}$  and  $x=1+\frac{3\pi}{2}$ ; min at  $x=1+\pi$ ;



i. 
$$f(x) = -2\cos\left(\frac{\pi x}{3} - \pi\right)$$
.

Ans: Start Point: x = 3; amplitude = 2; period = 6; End Point: x = 9; neutral positions at  $x = \frac{9}{2}$  and  $x = \frac{15}{2}$ ; max at x = 6



j. 
$$f(x) = \cos(-x - 2) - 1$$
.

Ans: Start Point: x=-2; amplitude = 1; period =  $2\pi$ ; End Point:  $x=2+2\pi$ ; neutral positions at  $x=-2+\frac{\pi}{2}$  and  $x=-2+\frac{3\pi}{2}$ ; min at  $x=-2+\pi$ ;



k. 
$$f(x) = \cos\left(\frac{2x}{3} - 1\right) + 2$$
.

Ans: Start Point:  $x = \frac{3}{2}$ ; amplitude = 1; period =  $3\pi$ ; End Point:  $x = \frac{3}{2} + 3\pi$ ; neutral positions at  $x = \frac{3}{2} + \frac{3\pi}{4}$  and at  $x = \frac{3}{2} + \frac{9\pi}{4}$ ; min at  $x = \frac{3+3\pi}{2}$ ;



1. 
$$f(x) = -\cos\left(-\frac{x}{2} + 1\right)$$
.

Ans: Start Point: x=2; amplitude = 1; period =  $4\pi$ ; End Point:  $x=2+4\pi$ ; neutral positions at  $x=2+\pi$  and  $x=2+3\pi$ ; max at  $x=2+2\pi$ ;



m.  $f(x) = \cos(-3x + 1)$ .

Ans: Start Point:  $x = \frac{1}{3}$ ; amplitude = 1; period =  $\frac{2\pi}{3}$ ; End Point:  $x = \frac{1}{3} + \frac{2\pi}{3}$ ; neutral positions at  $x = \frac{1}{3} + \frac{\pi}{6}$  and  $x = \frac{1}{3} + \frac{\pi}{2}$ ; min at  $x = \frac{1+\pi}{3}$ ;



n.  $f(x) = \cos(x - \pi)$ .

Ans: Start Point:  $x=\pi$ ; amplitude = 1; period =  $2\pi$ ; End Point:  $x=3\pi$ ; neutral positions at  $x=\frac{3\pi}{2}$  and  $x=\frac{5\pi}{2}$ ; min at  $x=2\pi$ ;



2. Let  $f(x) = \tan(x - 4)$ .

a. Find the period of f.

Ans:  $p = \pi$ 

b. Graph f. In your graph, for at least one cycle of f, indicate the coordinates of the x intercept, and the location of the vertical asymptotes.

Ans:



3. Let  $f(x) = 2\sec(\pi x + 1)$ .

a. Find the period of f.

Ans: p = 2

b. Graph f. In your graph, for at least one cycle of f, indicate the coordinates of the x maximum and minimum values of f, and the location of the vertical asymptotes.

Ans:

