1. Is the relationship $\{(3,2),(-1,3),(2,0),(4,2)\}$ a function? If yes, state its domain and range. If no, explain why not.
Ans: Yes. Domain $=\{3,-1,2,4\}$, Range $=\{2,3,0\}$
2. Is the relationship $\{(0,2),(2,0),(1,5)\}$ a function? If yes, state its domain and range. If no, explain why not.

Ans: Yes. Domain $=\{0,2,1\}$, Range $=\{2,0,5\}$
3. Is the relationship $\{(-1,5),(3,5),(10,5),(13,5),(17,5)\}$ a function? If yes, state its domain and range. If no, explain why not.
Ans: Yes. Domain $=\{-1,3,10,13,17\}$, Range $=\{5\}$
4. Is the relationship $\{(1,3),(2,6),(1,7),(-7,0)\}$ a function? If yes, state its domain and range. If no, explain why not.
Ans: No. Since the input 1 produced more than one output, namely 3 and 7.
5. For the given function f and g, evaluate $f(1), f(x+1), f(g(x))$, and $g(f(x))$:
a. $f(x)=2 x+3, \quad g(x)=x^{2}$

Ans: $f(1)=5, f(x+1)=2 x+5, f(g(x))=2 x^{2}+3, g(f(x))=(2 x+3)^{2}$
b. $f(x)=\frac{2}{x}, \quad g(x)=x-1$

Ans: $f(1)=2, f(x+1)=\frac{2}{x+1}, f(g(x))=\frac{2}{x-1}, g(f(x))=\frac{2}{x}-1$
c. $f(x)=x^{3}-2, \quad g(x)=\sqrt[3]{x+2}$

Ans: $f(1)=-1, f(x+1)=(x+1)^{3}-2, f(g(x))=x, g(f(x))=x$
6. Is the function $f(x)=x^{4}$ a one-to-one function? Explain.

Ans: No. $f(-1)=1=f(1)$
7. What is the domain and range of the function $f(x)=4 x-3$?

Ans: Domain of $f=$ All Real Numbers.
8. What is the domain and range of the function $f(x)=\sqrt{x+1}$?

Ans: Domain of $f=[-1, \infty)$
9. If f is the function defined by:

$$
\begin{array}{ccc}
& f: & \\
5 & \rightarrow & 5 \\
2 & \rightarrow & -3 \\
-1 & \rightarrow & 10 \\
4 & \rightarrow & 6 \\
0 & \rightarrow & 8
\end{array}
$$

Find the/an inverse of f. Does the inverse of f that you defined completely recovers all the values in the domain of f ? Can you define more than one inverse of f ?
Ans:

\[

\]

f^{-1} is unique. It completely recovers all values in the domain of f.
10. If f is the function defined by:

$$
\begin{array}{cccc}
& f: & \\
1 & \rightarrow & 1 \\
-2 & \rightarrow & 12 \\
3 & \rightarrow & 1 \\
11 & \rightarrow & -5 \\
6 & \rightarrow & 0 \\
7 & \rightarrow & 1 \\
8 & & -2
\end{array}
$$

Find the/an inverse of f. Does the inverse of f that you defined completely recovers all the values in the domain of f ? Can you define more than one inverse of f ?
f^{-1} is not unique. One possible choice:

\[

\]

The above f^{-1} cannot recover the numbers 3 and 7 in the domain of f. It is possible to define another f^{-1}.
11. Find the inverse of the given function:
a. $f(x)=\sqrt{x-1}$

Ans: $f^{-1}(x)=x^{2}+1, x \geq 0$
b. $f(x)=3 x-1$

Ans: $f^{-1}(x)=\frac{x+1}{3}$
c. $f(x)=x^{3}+2$

Ans: $f^{-1}(x)=\sqrt[3]{x-2}$
d. $f(x)=\frac{x-1}{x+2}$

Ans: $f^{-1}(x)=\frac{1+2 x}{1-x}$
e. $f(x)=e^{3 x}-4$

Ans: $f^{-1}(x)=\frac{\ln (x+4)}{3}$
f. $f(x)=\ln (5 x+1)-2$

Ans: $f^{-1}(x)=\frac{e^{y+2}-1}{5}$

