1. (i) Write the electron configuration and the orbital "box" diagram for the valence-shell electrons of each of the following ions. (ii) Which ions achieve the noble gas configuration? Name the noble gas.
(a) Mg^{2+}
(b) Cr^{3+}
(c) Fe^{3+}
(d) S^{2-}
(e) Br^{-}
2. The formation of lithium fluoride, LiCl , involves the following reaction:

$$
\mathrm{Li}(\mathrm{~s})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{LiCl}(\mathrm{~s}) ; \quad \Delta H_{\mathrm{f}}^{\circ}=-408 \mathrm{~kJ} / \mathrm{mol}
$$

Draw the Born-Haber Cycle for the formation of lithium fluoride from lithium and fluorine gas that includes the steps below, and calculate the lattice energy $\left(U_{\mathrm{L}}\right)$ for LiF .

Steps: $\quad \Delta H$ in $\mathrm{kJ} / \mathrm{mol}$

1) $\operatorname{Li}(\mathrm{s}) \rightarrow \operatorname{Li}(\mathrm{g}) ; \quad \Delta \mathrm{H}_{\mathrm{s}}=161$;
2) $\mathrm{Li}(\mathrm{g}) \rightarrow \mathrm{Li}^{+}(\mathrm{g})+\mathrm{e}^{-} ; \quad \mathrm{IE}=520$;
3) $\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{g}) ; \quad \mathrm{BE}=243$;
4) $\mathrm{Cl}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{g}) ; \quad \mathrm{EA}=-349$;
5) $\mathrm{Li}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{LiCl}(\mathrm{s}) ; \quad U_{\mathrm{L}}=$? (lattice energy)
3. Rank the following ionic compounds in increasing lattice energy.
(a) $\mathrm{LiF}, \mathrm{LiCl}, \mathrm{NaCl}, \mathrm{KCl}, \mathrm{KBr}$;
(b) $\mathrm{Li}_{2} \mathrm{O}, \mathrm{MgO}, \mathrm{LiF}, \mathrm{LiCl}, \mathrm{NaCl}$;
4. For each of the following molecules or polyatomic ions, determine the total number of valence electrons.
(a) BF_{3}
(b) ClF_{3}
(c) $\mathrm{CO}_{3}{ }^{2-}$
(d) SF_{4}
(e) PCl_{5}
(f) POCl_{3}
(g) $\mathrm{SO}_{4}{ }^{2-}$
(h) XeF_{4}

Midterm Exam\#3 Review Exercises

5. (a) Draw all resonance Lewis structures for $\mathrm{N}_{2} \mathrm{O}$ molecule. (b) Calculate the formal charge of each atom in each Lewis structure. (c) Propose the most and least favored Lewis structures, and explain your reasoning.
6. For each of the following molecules: (i) determine the total number of valence electrons; (ii) draw the Lewis structure; (iii) indicate the hybridization on the central atom; (iv) predict the molecular geometry and indicate whether it is polar or nonpolar. (Atoms in bold are central atoms.)
(a) $\mathbf{B F}_{3}$
(b) ClF_{3}
(c) $\mathbf{P C l}_{3}$
(d) $\mathbf{S F}_{4}$
(e) XeF_{4}
7. Given the following values of bond energy (BE , in $\mathrm{kJ} / \mathrm{mol}$):

Bonds:	$\mathrm{H}-\mathrm{H}$	$\mathrm{C}-\mathrm{C}$	$\mathrm{C}-\mathrm{H}$	$\mathrm{C}-\mathrm{F}$	$\mathrm{H}-\mathrm{O}$	$\mathrm{H}-\mathrm{F}$	$\mathrm{F}-\mathrm{F}$	$\mathrm{C} \equiv \mathrm{O}$
BE:	436	345	415	439	467	569	160	1080

Calculate the enthalpy change for the following reactions and indicate whether each reaction is exothermic or endothermic.
(a) $\mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CF}_{4}(\mathrm{~g})+4 \mathrm{HF}(\mathrm{g})$
(b) $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
8. Refer to the following structure and answer questions (a) - (e):

(a) The total number of σ-bonds $=$ \qquad ; the number of π-bonds $=$ \qquad .
(b) Which $\mathrm{C}-\mathrm{C}$ bond has the highest bond energy? \qquad
(c) What type of hybridization is found at: C_{1} : \qquad ; C_{2} : \qquad ; C_{4} : \qquad ?
(d) What is the geometrical orientation of bonds (or bonded atoms) around the following center?
(i) C_{1} : \qquad ; (ii) C_{2} : \qquad ; (iii) C_{4} : \qquad ;
(e) Give the predicted bond angles at: C_{1} : \qquad ; C_{3} : \qquad ; and C_{5} : \qquad _.
9. (a) Write a complete electron configuration for the following diatomic molecules and molecular ions using the molecular orbital notation, such as, $\left(\sigma_{1 \mathrm{~s}}\right)^{2}\left(\sigma_{1 \mathrm{~s}}{ }^{*}\right)^{2}\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}{ }^{*}\right)^{2} \ldots$ etc.
$\mathrm{C}_{2}{ }^{2-}$
NO
O_{2}
$\mathrm{O}_{2}{ }^{2-}$
(b) Draw the molecular orbital energy diagrams for the valence-shell electrons of each of the above molecules and molecular ions, determine the bond order in each molecule or ion, and indicate whether it is diamagnetic or paramagnetic.
10. A rigid cylinder is fixed with movable piston that can moves freely within the cylinder. The cylinder initially contains 67.4 mL of $\mathrm{N}_{2} \mathrm{O}$ gas at 1.05 atm and $20.5^{\circ} \mathrm{C}$. (a) What is the gas pressure if the temperature is increased to $83.0^{\circ} \mathrm{C}$ at constant volume? (b) What is the gas pressure if the volume is increased to 100.0 mL and the temperature to $83.0^{\circ} \mathrm{C}$? (c) What is the gas volume if the pressure and temperature are increased to 1.55 atm and $83.0^{\circ} \mathrm{C}$, respectively?
11. A gaseous compound has a density of $3.66 \mathrm{~g} / \mathrm{L}$ at $25.0^{\circ} \mathrm{C}$ and 755 torr. (a) Determine the molar mass of the compound. (b) If the compound is composed of 53.3% carbon, 11.2% hydrogen, and 35.5% oxygen, by mass, what is the molecular formula?
12. A weather balloon is filled with 1.25 kg of helium gas at $21.0^{\circ} \mathrm{C}$ and 1.00 atm pressure. (a) What is the volume of balloon in liters of the balloon under this condition? (b) If the balloon rises to an altitude where the atmospheric pressure and air temperature are 463 torr and $-30^{\circ} \mathrm{C}$, respectively, what is the volume of the balloon? (Assume that the balloon is completely elastic)
13. Potassium chlorate, KClO_{3}, decomposes when heated to produce O_{2} gas according to the following equation:

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

A $1.05-\mathrm{g}$ mixture of KClO_{3} and KCl is placed in a test-tube fitted with stopper that has rubber tubing that would allow the O_{2} gas produced by KClO_{3} to be collected over water in a graduated gas cylinder. When all of KClO_{3} in the mixture is completely decomposed, 182 mL of O_{2} was collected at $22^{\circ} \mathrm{C}$.
(a) If the total gas pressure $\left(\mathrm{P}_{\mathrm{O} 2}+\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right)$ is 755.0 torr, what is the partial pressure of O_{2} gas?
(b) How many moles of O_{2} gas was produced? (c) How many grams of KClO_{3} were decomposed?
(d) Assuming that all of KClO_{3} in the mixture was decomposed, calculate the percentage (by mass) of KClO_{3} in the mixture. $\quad\left(\mathrm{R}=0.08206^{\left.\mathrm{Latm} /{ }_{\text {mol. }} \text { ' } \text {; vapor pressure of water at } 22{ }^{\circ} \mathrm{C}=19.8 \text { torr }\right) ~}\right.$
14. Magnesium reacts with hydrochloric acid producing hydrogen gas according to the following equations:

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2}(\mathrm{~g})
$$

A student obtained 0.0800 g of magnesium strip and reacted it with excess dilute HCl solution in a eudiometer. When the reaction was completed, 79.0 mL of H_{2} gas was collected over water at $25^{\circ} \mathrm{C}$ and the total gas pressure ($\mathrm{P}_{\mathrm{H} 2}+\mathrm{P}_{\mathrm{H} 2}$) was 745.8 torr. Calculate: (a) the partial pressure of H_{2} gas; (b) the mole of H_{2} gas produced; (c) the mass of Mg reacted, and (d) the mass percent of pure magnesium in the strip. (The vapor pressure of water at $25^{\circ} \mathrm{C}$ is 23.8 torr.)
15. Sodium azide, NaN_{3}, decomposes when heated according to the following equation:

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

How many grams of NaN_{3} are needed to produce enough N_{2} gas to inflate a $45.0-\mathrm{L}$ airbag at $30.0^{\circ} \mathrm{C}$ and 806 torr, if: (a) the NaN_{3} sample decomposes 100% ? (b) only 92.0% of NaN_{3} decomposes?
16. A gaseous compound is composed of 67.6% uranium and the rest is fluorine. Under a certain condition of temperature, pressure and centrifuge speed, this compound diffuses through membrane separators at a rate of $64.0 \mathrm{~mL} /$ minute. Under the same condition, N_{2} gas diffuses through the same membrane at a rate of $227 \mathrm{~mL} /$ minute. (a) Calculate the molar mass of the uranium compound. (b) Determine its molecular formula of the compound.
17. Calculate the root-mean-square speed (u_{rms}) of H_{2} and N_{2} at $25^{\circ} \mathrm{C}$. (Molar mass: $\mathrm{H}_{2}=2.02 \times 10^{-3} \mathrm{~kg} / \mathrm{mol} ; \mathrm{N}_{2}=2.80 \times 10^{-2} \mathrm{~kg} / \mathrm{mol} ; \mathrm{R}=8.314 \mathrm{~J} /(\mathrm{mol} . \mathrm{K}) ; 1 \mathrm{~J}=1 \mathrm{~kg} . \mathrm{m}^{2} / \mathrm{s}^{2}$)
18. Write the sequence of reactions that lead to: (a) the formation of HNO_{3} from the reaction of N_{2} with O_{2}; (b) the formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ from burning sulfur.
19. Write a balance equation of the reaction of: (a) CaCO_{3} with HNO_{3}, and (b) CaCO_{3} with $\mathrm{H}_{2} \mathrm{SO}_{4}$.
20. (a) Name three most abundant element in the atmosphere. (b) In which region of the atmosphere do you find the ozone layer?

Chem 1A, Fall 2018
Midterm Exam\#3 Review Exercises

Answers:

1. (a) $\mathrm{Mg}^{2+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} ; \quad \frac{\uparrow \downarrow}{1 \mathrm{~s}} \frac{\downarrow \uparrow}{2 \mathrm{~s}} \frac{\uparrow \downarrow}{2 \mathrm{p}} \frac{\downarrow \uparrow}{} \uparrow \downarrow$;
(b) $\mathrm{Cr}^{3+}:[\mathrm{Ar}] 3 \mathrm{~d}^{3} ; \quad[\mathrm{Ar}] \frac{}{4 \mathrm{~s}} \frac{\uparrow}{} \frac{\uparrow}{3 \mathrm{~d}}-$
(c) $\mathrm{Fe}^{3+}:[\mathrm{Ar}] 3 \mathrm{~d}^{5} ; \quad[\mathrm{Ar}] \frac{\mathrm{m}^{2}}{4} \xlongequal{\uparrow} \frac{\uparrow}{3 \mathrm{~d}} \uparrow \uparrow$;
(d) $\mathrm{S}^{2-}:[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} ; \quad[\mathrm{Ne}] \frac{\downarrow \uparrow}{3 \mathrm{~s}} \frac{\uparrow \downarrow}{} \frac{\downarrow \uparrow}{3 \mathrm{p}} \frac{\uparrow \downarrow ;}{}$
(e) $\mathrm{Br}^{-}:[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{6} ; \quad[\mathrm{Ar}] \frac{\uparrow \downarrow}{4 \mathrm{~s}} \frac{\uparrow \downarrow}{} \frac{\uparrow \downarrow}{3 \mathrm{~d}} \frac{\uparrow \downarrow}{\uparrow \downarrow} \frac{\uparrow \downarrow}{} \frac{\uparrow \downarrow}{4 \mathrm{p}} \frac{\uparrow \downarrow}{\uparrow \downarrow}$;
(ii) (a) $\mathrm{Mg}^{2+}=\mathrm{Ne}$;
(d) $\mathrm{S}^{2-}=\mathrm{Ar}$;
(c) $\mathrm{Br}^{-}=\mathrm{Kr}$
2. Lattice energy $\left(U_{\mathrm{L}}\right)$ for $\mathrm{LiCl}=-861.5 \mathrm{~kJ} / \mathrm{mol}$
3. (a) $\mathrm{KBr}<\mathrm{KCl}<\mathrm{NaCl}<\mathrm{LiCl}<\mathrm{LiF}$;
(b) $\mathrm{NaCl}<\mathrm{LiCl}<\mathrm{LiF}<\mathrm{Li}_{2} \mathrm{O}<\mathrm{MgO}$
4. (i) Number of valence electrons:
(a) 24
(b) 28
(c) 24
(d) 34
(e) 40
(f) 32
(g) 32
(h) 36
5. $\Delta H_{\mathrm{rxn}}=\Sigma\left(\mathrm{BE}_{\text {reactants }}\right)-\Sigma\left(\mathrm{BE}_{\text {products }}\right)$
(a) $\Delta H_{\mathrm{rxn}}=-1732 \mathrm{~kJ}$ (exothermic reaction)
(b) $\Delta H_{\mathrm{rxn}}=206 \mathrm{~kJ}$ (endothermic reaction)
6. (a) 10σ-bonds and 3π-bonds;
(b) bond with highest energy is $\mathrm{C}_{4}-\mathrm{C}_{5}$ (a triple bond)
(c) Hybridization at: $\mathrm{C}_{1}=\mathrm{sp}^{3} ; \mathrm{C}_{2}=\mathrm{sp}^{2} ; \mathrm{C}_{4}=\mathrm{sp}$;
(d) Geometrical orientation at: $\mathrm{C}_{1}=$ tetrahedral; $\mathrm{C}_{2}=$ trigonal planar; $\mathrm{C}_{4}=$ linear;
(e) Bond angles at: $\mathrm{C}_{1}=109.5^{\circ} ; \mathrm{C}_{3}=120^{\circ} ; \mathrm{C}_{5}=180^{\circ}$;
7. (a) $\mathrm{C}_{2}{ }^{2-}:\left(\sigma_{1 \mathrm{~s}}\right)^{2}\left(\sigma_{1 \mathrm{~s}}{ }^{*}\right)^{2}\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}{ }^{*}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{4}\left(\sigma_{2 \mathrm{p}}\right)^{2}$

$$
\text { NO : }\left(\sigma_{1 s}\right)^{2}\left(\sigma_{1 \mathrm{~s}}{ }^{*}\right)^{2}\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}^{*}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{4}\left(\sigma_{2 \mathrm{p}}\right)^{2}\left(\pi_{2 \mathrm{p}}^{*}\right)^{*}
$$

$\left.\mathrm{O}_{2}:\left(\sigma_{1 \mathrm{~s}}\right)^{2}\left(\sigma_{1 \mathrm{~s}}{ }^{*}\right)^{2}\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}{ }^{*}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{4}\left(\sigma_{2 \mathrm{p}}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{*}\right)^{2}$
$\mathrm{O}_{2}{ }^{2-}:\left(\sigma_{1 \mathrm{~s}}\right)^{2}\left(\sigma_{1 \mathrm{~s}}{ }^{*}\right)^{2}\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}{ }^{*}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{4}\left(\sigma_{2 \mathrm{p}}\right)^{2}\left(\pi_{2 \mathrm{p}}{ }^{*}\right)^{4}$
(b) $\mathrm{C}_{2}{ }^{2-}$
\qquad
$-\quad \pi_{2 p}{ }^{*}$

O_{2}

$\mathrm{O}_{2}{ }^{2-}$

$\uparrow \downarrow \xlongequal{\uparrow} \pi_{2 p}$

$\xrightarrow{\uparrow \downarrow} \uparrow \downarrow \pi_{2 \mathrm{p}}$
$\uparrow \downarrow \sigma_{2 \mathrm{p}}$
$\uparrow \downarrow \sigma_{2 p}$

Chem 1A, Fall 2018
Midterm Exam\#3 Review Exercises

| $\uparrow \downarrow \sigma_{2 s}{ }^{*}$ |
| :---: | :---: | :---: | :---: |
| $\uparrow \downarrow \sigma_{2 s}$ | $\uparrow \downarrow \sigma_{2 s}$ | $\uparrow \downarrow \sigma_{2 s}$ | $\uparrow \downarrow \sigma_{2 \mathrm{~s}}$ |
| KK | KK | KK | KK |
| BO: 3 | 2.5 | 2 | 1 |
| diamagnetic | paramagnetic | paramagnetic | diamagnetic |

10.

(a) 1.27 atm ;
(b) 0.858 atm ;
(c) 55.4 mL
11. (a) $90.1 \mathrm{~g} / \mathrm{mol}$;
(b) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
12. (a) $7.54 \times 10^{3} \mathrm{~L}$; (b) $1.02 \times 10^{4} \mathrm{~L}$
13. (a) 735.2 torr;
(b) $7.27 \times 10^{-3} \mathrm{~mol}$;
(c) 0.594 g ;
(d) 55.6%
14. (a) 722.0 torr;
(b) $3.07 \times 10^{-3} \mathrm{~mol}$;
(c) 0.0746 g ;
(d) 93.3%
15. (a) 83.2 g ; (b) 90.4 g
16. (a) $352 \mathrm{~g} / \mathrm{mol}$; (b) UF_{6}
17. $u_{\mathrm{rms}}\left(\mathrm{H}_{2}\right)=1920 \mathrm{~m} / \mathrm{s} ; \quad u_{\mathrm{rms}}\left(\mathrm{N}_{2}\right)=515 \mathrm{~m} / \mathrm{s}$

