Section 7.3 – Trigonometric Substitution

Consider the integral $\int x \sqrt{a^2 - x^2} \, dx$.

In this case, it is clear that we apply a substitution of $u = a^2 - x^2$ to integrate

Now consider $\int \sqrt{a^2 - x^2} \, dx$ where a > 0.

These is no clear method of integration; however, notice that the inside of the square root vaguely resembles $1 - \sin^2 \theta = \cos^2 \theta$.

Let us try to eliminate the radical with a substitution of $x = a \sin \theta$.

$$\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2 (1 - \sin^2 \theta)} = \sqrt{a^2 \cos^2 \theta} = \left| a \cos \theta \right| = a \left| \cos \theta \right|$$

Notice the difference between the substitution $u = a^2 - x^2$ (in which the new variable is a function of the old one) and the substitution $x = a \sin \theta$ (the old variable is a function of the new one).

In general, we can make a substitution of the form x = g(t) by using the Substitution Rule in reverse.

To make our calculations simpler, we assume that g has an inverse function; that is, g is one-to-one.

In this case, if x = g(t) and dx = g'(t)dt, the Substitution Rule tells us

$$\int f(x) \, dx = \int f(g(t))g'(t) \, dt$$

This kind of substitution is called *inverse substitution*.

We can make the inverse substitution $x = a \sin \theta$ when it is a one-to-one function. Namely, we restrict $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ so our function is invertible.

Hence,
$$\sqrt{a^2 - x^2} = a \left| \cos \theta \right| = a \cos \theta$$
 since $\cos \theta \ge 0$ on $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

In general, how do we integrate functions involving $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$, $\sqrt{x^2 - a^2}$? Applying a similar technique, we use the following substitution on the restricted interval.

Radical	Substitution	Restiction on θ	Rationalized Radical
$\sqrt{a^2-x^2}$	$x = a \sin \theta$	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$\sqrt{a^2 - x^2} = a\cos\theta$
$\sqrt{a^2+x^2}$	$x = a \tan \theta$	$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$\sqrt{a^2 + x^2} = a \sec \theta$
$\sqrt{x^2-a^2}$	$X = a \sec \theta$	$0 < \theta < \frac{\pi}{2} \text{ or } \frac{3\pi}{2} < \theta < \pi$	$\sqrt{x^2-a^2}=a\tan\theta$

When applying a trigonometric substitution, we will encounter various trigonometric integrals. Below is a list of helpful trigonometric identities and integrals

Trigonometric Identities	Trigonometric Integrals	
rigonometre identities		
$\cos^2\theta = \frac{1}{2}(1+\cos 2\theta)$	$\int \sec\theta d\theta = \ln \left \sec\theta + \tan\theta \right + C$	
$\sin^2\theta = \frac{1}{2}(1-\cos 2\theta)$	$\int \csc\theta d\theta = \ln \left \csc\theta - \cot\theta \right + C$	
$\tan^2\theta = \sec^2\theta - 1$	$\int \tan d\theta = \ln \sec \theta + C$	
$\cot^2 \theta = \csc^2 \theta - 1$	$\int \cot\theta d\theta = \ln \left \sin\theta \right + C$	
$\sin 2\theta = 2\sin\theta\cos\theta$	$\int \sec^2 \theta d\theta = \tan \theta + C$	
	$\int \csc^2 \theta d\theta = -\cot \theta + C$	

Example 1: Evaluate
$$\int \frac{\sqrt{16-x^2}}{x} dx$$
.

Example 2: Show that the area of an ellipse is πab . **Example 3**: Evaluate $\int \frac{x^3}{\sqrt{1+x^2}} dx$

Example 4: Evaluate
$$\int \frac{x}{\sqrt{x^2 - 16}} dx$$

Example 5: Evaluate $\int_{3}^{6} \frac{\sqrt{x^2 - 9}}{x} dx$.

Example 6: Evaluate
$$\int \frac{x}{\sqrt{3-2x-x^2}} dx$$
.