Name____

Solve the exponential equation. Express the solution set in terms of natural logarithms.

1) $5^{x+7} = 3$

1) _____

Objective: (3.4) Use Logarithms to Solve Exponential Equations

2) $e^{4x} = 7$

2)

Objective: (3.4) Use Logarithms to Solve Exponential Equations

Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.

3) $e^{X} = 4.2$

3) _____

Objective: (3.4) Use Logarithms to Solve Exponential Equations

4) $3^{X} = 11$

4) _____

Objective: (3.4) Use Logarithms to Solve Exponential Equations

5) $3e^{X} = 29$

5) _____

Objective: (3.4) Use Logarithms to Solve Exponential Equations

For the given functions f and g, find the requested composite function value.

6) f(x) = 2x + 2, $g(x) = 2x^2 + 1$; Find $(g \circ g)(2)$.

6)

Objective: (5.1) Form a Composite Function

7)
$$f(x) = 2x + 7$$
, $g(x) = -2/x$; Find $(g \circ f)(3)$.

7) _____

Objective: (5.1) Form a Composite Function

8)
$$f(t) = \sqrt{t^4 + 30t^2 + 225}$$
, $g(t) = \frac{t+3}{3}$; Find $(f \circ g)(15)$.

8) _____

Objective: (5.1) Form a Composite Function

For the given functions f and g, find the requested composite function.

9)
$$f(x) = 7x + 6$$
, $g(x) = 5x - 1$; Find $(f \circ g)(x)$.

9) _____

10)
$$f(x) = \frac{3}{x-1}$$
, $g(x) = \frac{8}{3x}$; Find $(f \circ g)(x)$.

10) _____

Objective: (5.1) Form a Composite Function

Decide whether the composite functions, $f \circ g$ and $g \circ f$, are equal to x.

11)
$$f(x) = \frac{x+2}{3}$$
, $g(x) = 3x-2$

11) _____

Objective: (5.1) Form a Composite Function

12)
$$f(x) = \sqrt{x+1}$$
, $g(x) = x^2$

12) _____

Objective: (5.1) Form a Composite Function

Solve the problem.

13) An oil well off the Gulf Coast is leaking, with the leak spreading oil over the surface of the gulf as a circle. At any time t, in minutes, after the beginning of the leak, the radius of the oil slick on the surface is r(t) = 3t ft. Find the area A of the oil slick as a function of time.

13) _____

Objective: (5.1) Form a Composite Function

14) An airline charter service charges a fare per person of \$500 plus \$30 for each unsold seat. The airplane holds 25 passengers. Let x represent the number of unsold seats and write an expression for the total revenue R for a charter flight.

14) _____

Objective: (5.1) Form a Composite Function

Find the domain of the composite function $f \circ g$.

15)
$$f(x) = \frac{10}{x+10}$$
; $g(x) = x+6$

15) _____

Objective: (5.1) Find the Domain of a Composite Function

16)
$$f(x) = x + 6$$
; $g(x) = \frac{9}{x + 2}$

16) _____

Objective: (5.1) Find the Domain of a Composite Function

17)
$$f(x) = \frac{1}{x-7}$$
; $g(x) = \frac{-49}{x}$

17) _____

Objective: (5.1) Find the Domain of a Composite Function

18)
$$f(x) = \frac{1}{x-7}$$
; $g(x) = \sqrt{x-1}$

18) _____

Objective: (5.1) Find the Domain of a Composite Function

Indicate whether the function is one-to-one.

Objective: (5.2) Determine Whether a Function Is One-to-One

19) _____

Objective: (5.2) Determine Whether a Function Is One-to-One

20) _____

Use the horizontal line test to determine whether the function is one-to-one.

21)

21) _____

Objective: (5.2) Determine Whether a Function Is One-to-One

22)

22) _____

Objective: (5.2) Determine Whether a Function Is One-to-One

Find the inverse of the function and state its domain and range.

23) {(8, 1), (-1, -8), (-6, 5), (6, -5)}

23)

Objective: (5.2) Determine the Inverse of a Function Defined by a Map or a Set of Ordered Pairs

Decide whether or not the functions are inverses of each other.

24) f(x) = 3x + 9, $g(x) = \frac{1}{3}x - 3$

24) _____

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

25) $f(x) = (x - 6)^2, x \ge 6; g(x) = \sqrt{x + 6}$

25) _____

- Objective: (5.2) Find the Inverse of a Function Defined by an Equation
- **26)** $f(x) = (x 2)^2, x \ge 2; g(x) = \sqrt{x + 2}$

26) _____

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

The function f is one-to-one. Find its inverse.

27) f(x) = 3x - 6

29) $f(x) = \frac{5}{3x + 7}$

27) _____

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

28) _____

28) $f(x) = 5x^2 - 8$, $x \ge 0$ Objective: (5.2) Find the Inverse of a Function Defined by an Equation

29) _____

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

30)	f(x) =	_	4		
		=	X	+	4

30)

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

31)
$$f(x) = \sqrt[3]{x+7}$$

31) _____

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

Find a formula for the inverse of the function described below.

32) A size 56 dress in Country C is size 20 in Country D. A function that converts dress sizes in Country C to those in Country D is $f(x) = \frac{x}{2} - 8$.

32) _____

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

Approximate the value using a calculator. Express answer rounded to three decimal places.

33) 2
$$\sqrt{6}$$

33) _____

Objective: (5.3) Evaluate Exponential Functions

34) e^{-1.4}

34) _____

Objective: (5.3) Evaluate Exponential Functions

Solve the problem.

35) The function $D(h) = 6e^{-0.4h}$ can be used to determine the milligrams D of a certain drug in a patient's bloodstream h hours after the drug has been given. How many milligrams (to two decimals) will be present after 10 hours?

35) _____

Objective: (5.3) Evaluate Exponential Functions

36) A rumor is spread at an elementary school with 1200 students according to the model

36) _____

 $N=1200(1-e^{-0.16d})$ where N is the number of students who have heard the rumor and d is the number of days that have elapsed since the rumor began. How many students will have heard the rumor after 5 days?

Objective: (5.3) Evaluate Exponential Functions

Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function.

37) f(x) = 5(x - 3)

Objective: (5.3) Graph Exponential Functions

38) $f(x) = 2^{-x} + 5$

38)

Objective: (5.3) Graph Exponential Functions

Graph the function.

39) _____

-6 -4 -2 - 2 4 6 x

Objective: (5.3) Graph Exponential Functions

Solve the equation.

40)
$$4^{-X} = \frac{1}{16}$$

40) _____

Objective: (5.3) Solve Exponential Equations

41)
$$2(3x - 7) = 4$$

41) _____

Objective: (5.3) Solve Exponential Equations

Objective: (5.3) Solve Exponential Equations

42)
$$2^{x^2} - 3 = 64$$

42) _____

43)
$$9^{2x} \cdot 27(3-x) = \frac{1}{9}$$

Objective: (5.3) Solve Exponential Equations

44) $64^{x} - 4 = 16^{3x}$

Objective: (5.3) Solve Exponential Equations

44)

Solve the problem.

45) Suppose that $f(x) = 5^{X} + 6$. If f(x) = 1/131, what is x?

45) _____

Objective: (5.3) Solve Exponential Equations

Change the exponential expression to an equivalent expression involving a logarithm.

46)
$$7^3 = 343$$

46) _____

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

47) $5^2 = x$

47) _____

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

48) $32^{1/5} = 2$

48)

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

Change the logarithmic expression to an equivalent expression involving an exponent.

49)
$$\log_{1/5} 625 = -4$$

49) _____

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

50) $\log_3 9 = 2$

50)

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

51) $\log_5 25 = x$

51)

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

52) ln x = 4

52) _____

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

53) $\ln \frac{1}{e^5} = -5$

53)

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

Find the exact value of the logarithmic expression.

54) $\log_4 \frac{1}{64}$

54)

Objective: (5.4) Evaluate Logarithmic Expressions

55) log_{1/5} 25

55) _____

Objective: (5.4) Evaluate Logarithmic Expressions

56) $\log_5 \sqrt{5}$

Objective: (5.4) Evaluate Logarithmic Expressions

56) _____

57) ln e³

Objective: (5.4) Evaluate Logarithmic Expressions

57)

Use a calculator to evaluate the expression. Round your answer to three decimal places

58)

 $\frac{\ln \frac{7}{5}}{0.94}$

Objective: (5.4) Evaluate Logarithmic Expressions

58) _____

 $59) \frac{\log 7 + \log 2}{\ln 2 - \ln 5}$

Objective: (5.4) Evaluate Logarithmic Expressions

59)

Solve the problem.

60) The pH of a chemical solution is given by the formula

 $pH = -log_{10}[H^+]$

where [H+] is the concentration of hydrogen ions in moles per liter.

Find the pH if the $[H+] = 8.4 \times 10^{-13}$.

Objective: (5.4) Evaluate Logarithmic Expressions

60) _____

Solve the equation.

61) $\log_5 x^2 = 4$

Objective: (5.4) Solve Logarithmic Equations

62) $\log_3(x^2 - 2x) = 1$

62) _____

Objective: (5.4) Solve Logarithmic Equations

63) $7 + 9 \ln x = 4$

63) ___

Objective: (5.4) Solve Logarithmic Equations

64) $\ln \sqrt{x+5} = 3$

64)

Objective: (5.4) Solve Logarithmic Equations

The Richter scale converts seismographic readings into numbers for measuring the magnitude of an earthquake according to this function $M(x) = log\left(\frac{x}{x_0}\right)$, where $x_0 = 10^{-3}$.

65) What is the magnitude of an earthquake whose seismographic reading is 6.8 millimeters at

65) _____ a distance of 100 kilometers from its epicenter? Round the answer to the nearest tenth.

Objective: (5.4) Solve Logarithmic Equations

Solve the problem.

66) $pH = -log_{10}[H^+]$ Find the $[H_+]$ if the pH = 2.4.

Objective: (5.4) Solve Logarithmic Equations

Use the properties of logarithms to find the exact value of the expression. Do not use a calculator.

67) $\ln e^{\sqrt{6}}$

Objective: (5.5) Work with the Properties of Logarithms

68) log₂ 32 - log₂ 16

Objective: (5.5) Work with the Properties of Logarithms

68) _____

69) log₂ 27 • log₂₇ 8

Objective: (5.5) Work with the Properties of Logarithms

69) _____

70) eln 13

Objective: (5.5) Work with the Properties of Logarithms

70) _____

Write as the sum and/or difference of logarithms. Express powers as factors.

71)
$$\log_4\left(\frac{x^3}{y^8}\right)$$

Objective: (5.5) Write a Logarithmic Expression as a Sum or Difference of Logarithms

71) _____

72) $\ln \sqrt[3]{\text{ey}}$

Objective: (5.5) Write a Logarithmic Expression as a Sum or Difference of Logarithms

72) _____

73) $\log_3 \frac{\frac{7}{\sqrt{16}}}{q^2 p}$

Objective: (5.5) Write a Logarithmic Expression as a Sum or Difference of Logarithms

73) _____

$$74) \log \left(1 - \frac{1}{x^3}\right)$$

74)

Objective: (5.5) Write a Logarithmic Expression as a Sum or Difference of Logarithms

Express as a single logarithm.

75)
$$(\log_a x - \log_a y) + 2\log_a z$$

75) _____

Objective: (5.5) Write a Logarithmic Expression as a Single Logarithm

76)
$$2\log_b m - \frac{3}{5}\log_b n + \frac{1}{3}\log_b j - 3\log_b k$$

76) _____

Objective: (5.5) Write a Logarithmic Expression as a Single Logarithm

77)
$$3 \log_a (2x + 1) - 2 \log_a (2x - 1) + 2$$

77) _____

Objective: (5.5) Write a Logarithmic Expression as a Single Logarithm

Solve the problem.

78) Find the value of log3
$$4 \cdot \log_4 5 \cdot \log_5 6 \cdot \log_6 7 \cdot \log_7 8 \cdot \log_8 9$$

78) _____

Objective: (5.5) Evaluate Logarithms Whose Base Is Neither 10 Nor e

Solve the equation.

79)
$$\log_5(x+3) = 1$$

79) _____

Objective: (5.6) Solve Logarithmic Equations

80)
$$\log (3 + x) - \log (x - 5) = \log 3$$

80)

Objective: (5.6) Solve Logarithmic Equations

81) $\log_3 x + \log_3(x - 24) = 4$

81) _____

Objective: (5.6) Solve Logarithmic Equations

82) $\log_2(3x - 2) - \log_2(x - 5) = 4$

82) _____

Objective: (5.6) Solve Logarithmic Equations

83) $3 \cdot 52t - 1 = 75$

83) _____

Objective: (5.6) Solve Exponential Equations

Solve the problem.

84) The formula $A = 283e^{0.028t}$ models the population of a particular city, in thousands, t years after 1998. When will the population of the city reach 335 thousand?

84) _____

Objective: (5.6) Solve Exponential Equations

Find the present value. Round to the nearest cent.

85) To get \$5600 after 2 years at 7% compounded annually

85) _____

Objective: (5.7) Determine the Present Value of a Lump Sum of Money

86) To get \$25,000 after 12 years at 6% compounded semiannually

86) _____

Objective: (5.7) Determine the Present Value of a Lump Sum of Money

Solve the problem.

87) What principal invested at 8% compounded continuously for 4 years will yield \$1190? Round the answer to two decimal places.

87)

Objective: (5.7) Determine the Present Value of a Lump Sum of Money

Answer Key

Testname: 13SPR_CH5_MATH2_HW_4

1)
$$\left\{ \frac{\ln 3}{\ln 5} - 7 \right\}$$
2)
$$\left\{ \frac{\ln 7}{4} \right\}$$

- 3) 1 44
- 4) 2.18
- 5) 2.27
- 6) 163
- 7) $-\frac{2}{13}$
- 8) 51
- 9) 35x 1
- $10) \frac{9x}{8 3x}$
- 11) Yes, yes
- 12) No, no
- 13) $A(r(t)) = 9\pi t^2$
- 14) R(x) = (25 x)(500 + 30x) or $12,500 + 250x 30x^2$
- 15) $\{x \mid x \neq -16\}$
- 16) $\{x \mid x \neq -2\}$
- 17) $\{x \mid x \neq 0, x \neq -7\}$
- 18) $\{x \mid x \ge 1, x \ne 50\}$
- 19) Yes
- 20) No
- 21) Yes
- 22) No
- 23) $\{(1, 8), (-8, -1), (5, -6), (-5, 6)\}$ D = $\{1, -8, 5, -5\}$; R = $\{8, -1, -6, 6\}$
- 24) Yes
- 25) Yes
- 26) No

27)
$$f^{-1}(x) = \frac{x+6}{3}$$

28)
$$f^{-1}(x) = \sqrt{\frac{x+8}{5}}$$

29)
$$f^{-1}(x) = \frac{5 - 7x}{3x}$$

30)
$$f^{-1}(x) = \frac{-4x + 4}{x}$$

- 31) $f^{-1}(x) = x^3 7$
- 32) $f^{-1}(x) = 2(x + 8)$
- 33) 5.462
- 34) 0.247
- 35) 0.11 mg
- 36) 661 students

37) domain of f: $(-\infty, \infty)$; range of f: $(0, \infty)$ horizontal asymptote: y = 0

38) domain of f: $(-\infty, \infty)$; range of f: $(5, \infty)$ horizontal asymptote: y = 5

- 40) {2}
- 41) {3}
- 42) {3, -3}
- 43) {-11}
- 44) {- 4} 45) -3
- 46) $\log_7 343 = 3$
- 47) $\log_5 x = 2$

Answer Key

Testname: 13SPR_CH5_MATH2_HW_4

48)
$$\log_{32} 2 = \frac{1}{5}$$

$$49) \left(\frac{1}{5}\right)^{-4} = 625$$

$$50)\ 3^2 = 9$$

51)
$$5^{X} = 25$$

52)
$$e^4 = x$$

53)
$$e^{-5} = \frac{1}{e^5}$$

56)
$$\frac{1}{2}$$

64)
$$\{e^6 - 5\}$$

66)
$$3.98 \times 10^{-3}$$

67)
$$\sqrt{6}$$

71)
$$3\log_4 x - 8\log_4 y$$

72)
$$\frac{1}{3} \ln y + \frac{1}{3}$$

73)
$$\frac{1}{7} \log_3 16 - 2 \log_3 q - \log_3 p$$

74)
$$\log(x-1) + \log(x^2 + x + 1) - 3 \log x$$

75)
$$\log_a \frac{xz^2}{y}$$

76)
$$\log_b \frac{m^2 j^{1/3}}{n^{3/5} k^3}$$

77)
$$\log_a \frac{a^2(2x+1)^3}{(2x-1)^2}$$

Answer Key
Testname: 13SPR_CH5_MATH2_HW_4

83)
$$\left\{ \frac{3}{2} \right\}$$

- 84) 2004
- 85) \$4891.26
- 86) \$12,298.34
- 87) \$864.12