3.8 Related Rates

A student is using a straw to drink from a conical paper cup, whose axis is vertical, at a rate of 3 cm³/sec. If the height of the cup is 10 cm and the diameter of its opening is 6 cm, how fast is the level of the liquid falling when the depth of the liquid is 5 cm?

Volume of cone \(V = \frac{1}{3} \pi r^2 h \) ← make into 2 variables \(V \) and \(h \) for the facts we have and want to find.

Height of the water in cone is always parallel to other heights, the vertex of the cone, axis, and side form a triangle

And any height of water will form similar triangles \(\triangle ABC \sim \triangle DEC \) with corresponding proportional sides \(\frac{r}{h} = \frac{3}{10} \rightarrow \frac{3/10}{h} \)
\[V = \frac{1}{3} \pi r^2 h \quad \frac{r}{h} = \frac{3}{10} \]
\[r = \frac{3}{10} h \]
\[V = \frac{1}{3} \pi \left(\frac{3}{10} h \right)^2 \cdot h \]

\[V = \frac{3\pi}{100} h^3 \]

\[\frac{dV}{dt} = 3 \cdot 3\pi h^2 \cdot \frac{dh}{dt} \]

Now evaluate at \(\frac{dV}{dt} = 3 \), \(h = 5 \)

Then solve for \(\frac{dh}{dt} \)

\[3 = \frac{9\pi}{100} \cdot 25 \cdot \frac{dh}{dt} \]

\[3 = \frac{9\pi}{4} \cdot \frac{dh}{dt} \]

\[\frac{3 \cdot 4}{9\pi} = \frac{dh}{dt} \]

\[\frac{4}{3\pi} = \frac{dh}{dt} \]

Answer: \(A + h = 5 \)

height of water is falling \(\frac{4}{3\pi} \) cm/sec

\(\approx 0.42 \) cm/sec
3.8 Related Rates

How fast is the airplane distance from the observer increasing 45 see later?

\[\frac{dx}{dt} = 400 \text{ mi/hr} \]

\[x^2 + 1^2 = s^2 \]

relationship between variables.

implicit differentiation to find

\[\frac{ds}{dt} = \text{rate of change of distance from observer to airplane} \]

\[2x \cdot \frac{dx}{dt} + 0 = 2s \cdot \frac{ds}{dt} \]

\[2x \frac{dx}{dt} = 2s \frac{ds}{dt} \]

\[\frac{x}{s} \frac{dx}{dt} = \frac{ds}{dt} \]

at \(t = \frac{1}{80} \text{ hr} \)

\[\frac{5 \cdot 400}{\sqrt{120}} = \frac{ds}{dt} \]

\(X = \text{distance airplane travelled} \)

\(= 400 \times \frac{1}{80} \)

\[= \frac{400}{80} \]

\(= \frac{400}{80} \)

\(X = s = 5 \text{ mi} \)

\(\sqrt{120} s \)

\(1 \text{ mi} \)

\[s^2 = s^2 + 1^2 \]

\[= 25 + 1 \]

\[s^2 = 26 \]

\[s = \sqrt{26} \]

1-2:15 pm
(9) Sand is pouring from a pipe at the rate of $18 \text{ ft}^3/\text{sec}$. If the falling sand forms a conical pile on the ground whose altitude is always \(\frac{1}{4} \) the diameter of its base, how fast is the altitude increasing when the pile is 4 ft high?

Use the fact that \(V = \frac{1}{3} \pi r^2 h \). (Find \(\frac{dh}{dt} \) so get \(V \) in terms of \(h \).)

\[
V = \frac{1}{3} \pi r^2 h
\]

\[
= \frac{1}{3} \pi (2h)^2 h
\]

\[
V = \frac{4}{3} \pi h^3
\]

relationship in \(V \) & \(h \).

implicit differentiation

\[
\frac{dV}{dt} = 3 \cdot \frac{4}{3} \pi h^2 \cdot \frac{dh}{dt}
\]

\[
160 = 4 \pi (4)^2 \cdot \frac{dh}{dt}
\]

\[
160 = 16^2 \pi \frac{dh}{dt}
\]

\[
\frac{160}{16 \pi} = \frac{dh}{dt}
\]

\[
\frac{1}{4 \pi} = \frac{dh}{dt}
\]

\[
0.049 \frac{ft}{sec} = \frac{dh}{dt}
\]