Solve the exponential equation. Express the solution set in terms of natural logarithms.

1) \(5^x + 7 = 3\)
 Objective: (3.4) Use Logarithms to Solve Exponential Equations

2) \(e^{4x} = 7\)
 Objective: (3.4) Use Logarithms to Solve Exponential Equations

Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.

3) \(e^x = 4.2\)
 Objective: (3.4) Use Logarithms to Solve Exponential Equations

4) \(3^x = 11\)
 Objective: (3.4) Use Logarithms to Solve Exponential Equations

5) \(3e^x = 29\)
 Objective: (3.4) Use Logarithms to Solve Exponential Equations

For the given functions \(f\) and \(g\), find the requested composite function value.

6) \(f(x) = 2x + 2, \quad g(x) = 2x^2 + 1; \quad \text{Find } (g \circ f)(2).\)
 Objective: (5.1) Form a Composite Function
7) \(f(x) = 2x + 7, \ g(x) = -\frac{2}{x}; \) Find \((g \circ f)(3).\)

Objective: (5.1) Form a Composite Function

8) \(f(t) = \sqrt{t^4 + 30t^2 + 225}, \ g(t) = \frac{t + \frac{3}{5}}{3}; \) Find \((f \circ g)(15).\)

Objective: (5.1) Form a Composite Function

For the given functions \(f \) and \(g, \) find the requested composite function.

9) \(f(x) = 7x + 6, \ g(x) = 5x - 1; \) Find \((f \circ g)(x).\)

Objective: (5.1) Form a Composite Function

10) \(f(x) = \frac{3}{x - 1}, \ g(x) = \frac{8}{3x}; \) Find \((f \circ g)(x).\)

Objective: (5.1) Form a Composite Function

Decide whether the composite functions, \(f \circ g \) and \(g \circ f, \) are equal to \(x.\)

11) \(f(x) = \frac{x + 2}{3}, \ g(x) = 3x - 2 \)

Objective: (5.1) Form a Composite Function

12) \(f(x) = \sqrt{x + 1}, \ g(x) = x^2 \)

Objective: (5.1) Form a Composite Function
Solve the problem.

13) An oil well off the Gulf Coast is leaking, with the leak spreading oil over the surface of the gulf as a circle. At any time \(t \), in minutes, after the beginning of the leak, the radius of the oil slick on the surface is \(r(t) = 3t \) ft. Find the area \(A \) of the oil slick as a function of time.

Objective: (5.1) Form a Composite Function

14) An airline charter service charges a fare per person of $500 plus $30 for each unsold seat. The airplane holds 25 passengers. Let \(x \) represent the number of unsold seats and write an expression for the total revenue \(R \) for a charter flight.

Objective: (5.1) Form a Composite Function

Find the domain of the composite function \(f \circ g \).

15) \(f(x) = \frac{10}{x + 10}; \quad g(x) = x + 6 \)

Objective: (5.1) Find the Domain of a Composite Function

16) \(f(x) = x + 6; \quad g(x) = \frac{9}{x + 2} \)

Objective: (5.1) Find the Domain of a Composite Function

17) \(f(x) = \frac{1}{x - 7}; \quad g(x) = \frac{-49}{x} \)

Objective: (5.1) Find the Domain of a Composite Function

18) \(f(x) = \frac{1}{x - 7}; \quad g(x) = \sqrt{x - 1} \)

Objective: (5.1) Find the Domain of a Composite Function
Indicate whether the function is one-to-one.

19) \{(-2, -19), (-3, 14), (19, 17)\}
 Objective: (5.2) Determine Whether a Function Is One-to-One

20) \{(7, 4), (-8, 4), (-20, 7)\}
 Objective: (5.2) Determine Whether a Function Is One-to-One

Use the horizontal line test to determine whether the function is one-to-one.

21)

Objective: (5.2) Determine Whether a Function Is One-to-One

22)

Objective: (5.2) Determine Whether a Function Is One-to-One
Find the inverse of the function and state its domain and range.

23) \{((8, 1), (-1, -8), (-6, 5), (6, -5))\}

Objective: (5.2) Determine the Inverse of a Function Defined by a Map or a Set of Ordered Pairs

Decide whether or not the functions are inverses of each other.

24) \(f(x) = 3x + 9, \ g(x) = \frac{1}{3}x - 3\)

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

25) \(f(x) = (x - 6)^2, \ x \geq 6; \ g(x) = \sqrt{x} + 6\)

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

26) \(f(x) = (x - 2)^2, \ x \geq 2; \ g(x) = \sqrt{x} + 2\)

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

The function \(f\) is one-to-one. Find its inverse.

27) \(f(x) = 3x - 6\)

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

28) \(f(x) = 5x^2 - 8, \ x \geq 0\)

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

29) \(f(x) = \frac{5}{3x + 7}\)

Objective: (5.2) Find the Inverse of a Function Defined by an Equation
30) \(f(x) = \frac{4}{x + 4} \)

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

31) \(f(x) = \sqrt[3]{x + 7} \)

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

Find a formula for the inverse of the function described below.

32) A size 56 dress in Country C is size 20 in Country D. A function that converts dress sizes in Country C to those in Country D is \(f(x) = \frac{x}{2} - 8 \).

Objective: (5.2) Find the Inverse of a Function Defined by an Equation

Approximate the value using a calculator. Express answer rounded to three decimal places.

33) \(2 \sqrt{6} \)

Objective: (5.3) Evaluate Exponential Functions

34) \(e^{-1.4} \)

Objective: (5.3) Evaluate Exponential Functions

Solve the problem.

35) The function \(D(h) = 6e^{-0.4h} \) can be used to determine the milligrams \(D \) of a certain drug in a patient’s bloodstream \(h \) hours after the drug has been given. How many milligrams (to two decimals) will be present after 10 hours?

Objective: (5.3) Evaluate Exponential Functions
36) A rumor is spread at an elementary school with 1200 students according to the model

\[N = 1200(1 - e^{-0.16d}) \]

where \(N \) is the number of students who have heard the rumor and \(d \) is the number of days that have elapsed since the rumor began. How many students will have heard the rumor after 5 days?

Objective: (5.3) Evaluate Exponential Functions

Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function.

37) \(f(x) = 5(x - 3) \)

Objective: (5.3) Graph Exponential Functions

38) \(f(x) = 2^{-x} + 5 \)

Objective: (5.3) Graph Exponential Functions
Graph the function.

39) \(f(x) = \left(\frac{1}{3} \right)^x \)

Solve the equation.

40) \(4^{-x} = \frac{1}{16} \)

41) \(2(3x - 7) = 4 \)

42) \(2x^2 - 3 = 64 \)

43) \(92x \cdot 27(3 - x) = \frac{1}{9} \)

Objective: (5.3) Graph Exponential Functions

Objective: (5.3) Solve Exponential Equations
44) \(64x - 4 = 16^{3x}\)

Objective: (5.3) Solve Exponential Equations

Solve the problem.

45) Suppose that \(f(x) = 5^x + 6\). If \(f(x) = 1/131\), what is \(x\)?:

Objective: (5.3) Solve Exponential Equations

Change the exponential expression to an equivalent expression involving a logarithm.

46) \(7^3 = 343\)

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

47) \(5^2 = x\)

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

48) \(32^{1/5} = 2\)

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

Change the logarithmic expression to an equivalent expression involving an exponent.

49) \(\log_{1/5} 625 = -4\)

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements
50) \(\log_3 9 = 2 \)

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

51) \(\log_5 25 = x \)

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

52) \(\ln x = 4 \)

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

53) \(\ln \left(\frac{1}{e^5} \right) = -5 \)

Objective: (5.4) Change Exponential Statements to Logarithmic Statements & Logarithmic Statements to Exponential Statements

Find the exact value of the logarithmic expression.

54) \(\log_4 \frac{1}{64} \)

Objective: (5.4) Evaluate Logarithmic Expressions

55) \(\log_{1/5} 25 \)

Objective: (5.4) Evaluate Logarithmic Expressions
56) \(\log_5 \sqrt{5} \)

Objective: (5.4) Evaluate Logarithmic Expressions

57) \(\ln e^3 \)

Objective: (5.4) Evaluate Logarithmic Expressions

Use a calculator to evaluate the expression. Round your answer to three decimal places

58) \[
\frac{\ln \frac{7}{5}}{0.94}
\]

Objective: (5.4) Evaluate Logarithmic Expressions

59) \[
\frac{\log 7 \cdot \log 2}{\ln 2 - \ln 5}
\]

Objective: (5.4) Evaluate Logarithmic Expressions

Solve the problem.

60) The pH of a chemical solution is given by the formula

\[\text{pH} = -\log_{10}[H^+] \]

where \([H^+]\) is the concentration of hydrogen ions in moles per liter.

Find the pH if the \([H^+] = 8.4 \times 10^{-13} \).

Objective: (5.4) Evaluate Logarithmic Expressions

Solve the equation.

61) \(\log_5 x^2 = 4 \)

Objective: (5.4) Solve Logarithmic Equations
62) \(\log_3 (x^2 - 2x) = 1 \)

Objective: (5.4) Solve Logarithmic Equations

63) \(7 + 9 \ln x = 4 \)

Objective: (5.4) Solve Logarithmic Equations

64) \(\ln \sqrt{x} + 5 = 3 \)

Objective: (5.4) Solve Logarithmic Equations

The Richter scale converts seismographic readings into numbers for measuring the magnitude of an earthquake according to this function \(M(x) = \log \left(\frac{x}{x_0} \right) \), where \(x_0 = 10^{-3} \).

65) What is the magnitude of an earthquake whose seismographic reading is 6.8 millimeters at a distance of 100 kilometers from its epicenter? Round the answer to the nearest tenth.

Objective: (5.4) Solve Logarithmic Equations

Solve the problem.

66) \(\text{pH} = -\log_{10}[H^+] \) Find the \([H^+]\) if the pH = 2.4.

Objective: (5.4) Solve Logarithmic Equations

Use the properties of logarithms to find the exact value of the expression. Do not use a calculator.

67) \(\ln e^{\sqrt{6}} \)

Objective: (5.5) Work with the Properties of Logarithms
68) \(\log_2 32 - \log_2 16 \)

Objective: (5.5) Work with the Properties of Logarithms

69) \(\log_2 27 \cdot \log_2 8 \)

Objective: (5.5) Work with the Properties of Logarithms

70) \(e^{\ln 13} \)

Objective: (5.5) Work with the Properties of Logarithms

Write as the sum and/or difference of logarithms. Express powers as factors.

71) \(\log_4 \left(\frac{x^3}{y^8} \right) \)

Objective: (5.5) Write a Logarithmic Expression as a Sum or Difference of Logarithms

72) \(\ln \sqrt[3]{ey} \)

Objective: (5.5) Write a Logarithmic Expression as a Sum or Difference of Logarithms

73) \(\log_3 \frac{\sqrt[7]{16}}{q^2p} \)

Objective: (5.5) Write a Logarithmic Expression as a Sum or Difference of Logarithms
74) \(\log \left(1 - \frac{1}{x^3} \right) \)

Objective: (5.5) Write a Logarithmic Expression as a Sum or Difference of Logarithms

Express as a single logarithm.

75) \((\log_a x - \log_a y) + 2 \log_a z\)

Objective: (5.5) Write a Logarithmic Expression as a Single Logarithm

76) \(2 \log_b m - \frac{3}{5} \log_b n + \frac{1}{3} \log_b j - 3 \log_b k\)

Objective: (5.5) Write a Logarithmic Expression as a Single Logarithm

77) \(3 \log_a (2x + 1) - 2 \log_a (2x - 1) + 2\)

Objective: (5.5) Write a Logarithmic Expression as a Single Logarithm

Solve the problem.

78) Find the value of \(\log_3 4 \cdot \log_4 5 \cdot \log_5 6 \cdot \log_6 7 \cdot \log_7 8 \cdot \log_8 9\)

Objective: (5.5) Evaluate Logarithms Whose Base Is Neither 10 Nor e

Solve the equation.

79) \(\log_5 (x + 3) = 1\)

Objective: (5.6) Solve Logarithmic Equations

80) \(\log (3 + x) - \log (x - 5) = \log 3\)

Objective: (5.6) Solve Logarithmic Equations
81) \[\log_3 x + \log_3(x - 24) = 4 \]

Objective: (5.6) Solve Logarithmic Equations

82) \[\log_2(3x - 2) - \log_2(x - 5) = 4 \]

Objective: (5.6) Solve Logarithmic Equations

83) \[3 \cdot 5^2t - 1 = 75 \]

Objective: (5.6) Solve Exponential Equations

Solve the problem.

84) The formula \(A = 283e^{0.028t} \) models the population of a particular city, in thousands, \(t \) years after 1998. When will the population of the city reach 335 thousand?

Objective: (5.6) Solve Exponential Equations

Find the present value. Round to the nearest cent.

85) To get $5600 after 2 years at 7% compounded annually

Objective: (5.7) Determine the Present Value of a Lump Sum of Money

86) To get $25,000 after 12 years at 6% compounded semiannually

Objective: (5.7) Determine the Present Value of a Lump Sum of Money

Solve the problem.

87) What principal invested at 8% compounded continuously for 4 years will yield $1190?

Round the answer to two decimal places.

Objective: (5.7) Determine the Present Value of a Lump Sum of Money
Answer Key
Testname: 13SPR_CH5_MATH1_HW_3

1) \[\left\{ \frac{\ln 3}{\ln 5} - 7 \right\} \]
2) \[\left\{ \frac{\ln 7}{4} \right\} \]
3) 1.44
4) 2.18
5) 2.27
6) 163
7) \(-\frac{2}{13}\)
8) 51
9) 35x - 1
10) \(\frac{9x}{8 - 3x}\)
11) Yes, yes
12) No, no
13) \(A(r(t)) = 9\pi t^2\)
14) \(R(x) = (25 - x)(500 + 30x)\) or \(12,500 + 250x - 30x^2\)
15) \(\{x \mid x \neq -16\}\)
16) \(\{x \mid x \neq -2\}\)
17) \(\{x \mid x \neq 0, x \neq -7\}\)
18) \(\{x \mid x \geq 1, x \neq 50\}\)
19) Yes
20) No
21) Yes
22) No
23) \((1, 8), (-8, -1), (5, -6), (-5, 6)\) \(D = \{1, -8, 5, -5\} ; R = \{8, -1, -6, 6\}\)
24) Yes
25) Yes
26) No
27) \(f^{-1}(x) = \frac{x + 6}{3}\)
28) \(f^{-1}(x) = \sqrt{\frac{x + 8}{5}}\)
29) \(f^{-1}(x) = \frac{5 - 7x}{3x}\)
30) \(f^{-1}(x) = \frac{-4x + 4}{x}\)
31) \(f^{-1}(x) = x^3 - 7\)
32) \(f^{-1}(x) = 2(x + 8)\)
33) 5.462
34) 0.247
35) 0.11 mg
36) 661 students
37) domain of f: $(-\infty, \infty)$; range of f: $(0, \infty)$
 horizontal asymptote: $y = 0$

38) domain of f: $(-\infty, \infty)$; range of f: $(5, \infty)$
 horizontal asymptote: $y = 5$

40) $\{2\}$
41) $\{3\}$
42) $\{3, -3\}$
43) (-11)
44) (-4)
45) -3
46) $\log_7 343 = 3$
47) $\log_5 x = 2$
48) \(\log_{32} 2 = \frac{1}{5} \)

49) \(\left(\frac{1}{5} \right)^{-4} = 625 \)

50) 3\(^2\) = 9

51) 5\(^x\) = 25

52) \(e^4 = x \)

53) \(e^{-5} = \frac{1}{e^5} \)

54) -3

55) -2

56) \(\frac{1}{2} \)

57) 3

58) 0.358

59) -1.251

60) 12.08

61) [25, -25]

62) [3, -1]

63) [\(e^{-1/3} \)]

64) [\(e^6 - 5 \)]

65) 3.8

66) 3.98 \times 10^{-3}

67) \(\sqrt[3]{6} \)

68) 1

69) 3

70) 13

71) 3\(\log_4 x - 8 \log_4 y \)

72) \(\frac{1}{3} \ln y + \frac{1}{3} \)

73) \(\frac{1}{7} \log_3 16 - 2 \log_3 q - \log_3 p \)

74) \(\log(x - 1) + \log(x^2 + x + 1) - 3 \log x \)

75) \(\log_a \frac{xz^2}{y} \)

76) \(\log_b \frac{m^2}{n^{3/5} k^3} \)

77) \(\log_a \frac{a^2(2x + 1)^3}{(2x - 1)^2} \)

78) 2

79) [2]

80) [9]

81) [27]

82) [6]
Answer Key
Testname: 13SPR_CH5_MATH1_HW_3

83) $\left\{ \frac{3}{2} \right\}$
84) 2004
85) 4891.26
86) $12,298.34$
87) 864.12