Math 3E HW #5

Answers must be submitted on Moodle by 11AM on Thursday, April 7th.

Good luck!

$\label{eq:multiple} \text{MULTIPLE CHOICE.} \ \text{Choose the one alternative that best completes the statement or answers the question.}$

Solve the problem.

1) Find all values of h such that **y** will be in the subspace of \mathcal{R}^3 spanned by **v**₁, **v**₂, **v**₃ if **v**₁ = $\begin{bmatrix} 1 \\ 2 \\ -4 \end{bmatrix}$, 1) _____

$$\mathbf{v}_2 = \begin{bmatrix} 3\\ 4\\ -8 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -1\\ 0\\ 0 \end{bmatrix}, \text{ and } \mathbf{y} = \begin{bmatrix} 7\\ 7\\ h \end{bmatrix}.$$

A) h = -14 or 0 B) h = -28 C) h = -14 D) all h \ne -14

If the set W is a vector space, find a set S of vectors that spans it. Otherwise, state that W is not a vector space.

3) _____

Find an explicit description of the null space of matrix A by listing vectors that span the null space.

3) A = $\begin{bmatrix} 1 & -2 & 3 & -3 & -1 \\ -2 & 5 & -5 & 4 & 2 \\ -1 & 3 & -2 & 1 & 1 \end{bmatrix}$	
A)	B)
$\begin{bmatrix} 2\\1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -3\\-1\\1\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\0\\0\\1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\0\\1\\1\\0 \end{bmatrix}$	$\begin{bmatrix} -5\\ -1\\ 1\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 7\\ 2\\ 0\\ 0\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 1\\ 1 \end{bmatrix}$
C)	D)
$\begin{bmatrix} 1\\0\\5\\-7\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\-2\\0 \end{bmatrix}$	$\begin{bmatrix} -5\\ -1\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 0\\ 0\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 0\\ 1\\ 1\\ 1 \end{bmatrix}$

Determine if the vector u is in the column space of matrix A and whether it is in the null space of A.

4) $\mathbf{u} = \begin{bmatrix} 5\\-3\\5 \end{bmatrix}$, $\mathbf{A} = \begin{bmatrix} 1 & -3 & 4\\-1 & 0 & -5\\3 & -3 & 6 \end{bmatrix}$ A) In Col A and in Nul A B) In Col A, not in Nul A D) Not in Col A, not in Nul A C) Not in Col A, in Nul A 5) $\mathbf{u} = \begin{vmatrix} -4 \\ 3 \\ -4 \\ -2 \end{vmatrix}$, $\mathbf{A} = \begin{vmatrix} 1 & 0 & 3 \\ -2 & -1 & -4 \\ 3 & -3 & 0 \\ -1 & 3 & 6 \end{vmatrix}$ A) Not in Col A, not in Nul A B) Not in Col A, in Nul A C) In Col A and in Nul A D) In Col A, not in Nul A

Find a basis for the column space of the matrix.

6) Let A =	-1 1	3 -2	7 -7	2 -1	0 3	and B =	1 0	-3 1	-7 0	-2 1	0 3	
	_ 3	-4 -6	-9 -11	-5 -9	1 -1		0	0	5 0	-3 0	-5 0	

It can be shown that matrix A is row equivalent to matrix B. Find a basis for Col A.

A)	B)
$\begin{bmatrix} -1\\1\\2\\3 \end{bmatrix}' \begin{bmatrix} 3\\-2\\-4\\-6 \end{bmatrix}' \begin{bmatrix} 2\\-1\\-5\\-9 \end{bmatrix}$	$\begin{bmatrix} -1\\1\\2\\3 \end{bmatrix}' \begin{bmatrix} 3\\-2\\-4\\-6 \end{bmatrix}' \begin{bmatrix} 7\\-7\\-9\\-9\\-11 \end{bmatrix}' \begin{bmatrix} 2\\-1\\-5\\-9 \end{bmatrix}' \begin{bmatrix} 0\\3\\1\\-1 \end{bmatrix}$
C)	D)
$\begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}' \begin{bmatrix} -3\\1\\0\\0\\0 \end{bmatrix}' \begin{bmatrix} -7\\0\\5\\0 \end{bmatrix}$	$\begin{bmatrix} -1\\1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\-2\\-4\\-6 \end{bmatrix}, \begin{bmatrix} 7\\-7\\-9\\-11 \end{bmatrix}$

Determine whether the set of vectors is a basis for \mathcal{R}^3 .

7) Given the set of vectors $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$, decide which of the following statements is true: A: Set is linearly independent and spans \mathcal{R}^3 . Set is a basis for \mathcal{R}^3 . B: Set is linearly independent but does not span \mathcal{R}^3 . Set is not a basis for \mathcal{R}^3 .

C: Set spans \mathbb{R}^3 but is not linearly independent. Set is not a basis for \mathbb{R}^3 .

- D: Set is not linearly independent and does not span \mathcal{R}^3 . Set is not a basis for \mathcal{R}^3 .
 - A) A B) C C) D D) B

6) _____

7)

4) _____

5)

8) Given the set of vectors $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$, decide which of the following statements is true: 8) _____

- A: Set is linearly independent and spans \mathcal{R}^3 . Set is a basis for \mathcal{R}^3 .
- B: Set is linearly independent but does not span \mathcal{R}^3 . Set is not a basis for \mathcal{R}^3 .
- C: Set spans \mathcal{R}^3 but is not linearly independent. Set is not a basis for \mathcal{R}^3 .
- D: Set is not linearly independent and does not span \mathcal{R}^3 . Set is not a basis for \mathcal{R}^3 . A) D B) C C) B D) A

Find the coordinate vector [x]*B* of the vector x relative to the given basis *B*.

9)
$$\mathbf{b}_1 = \begin{bmatrix} 3\\5\\-4 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 4\\-3\\-2 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 6\\-19\\2 \end{bmatrix}$, and $B = \{\mathbf{b}_1, \mathbf{b}_2\}$
A) B) C) D)
 $\begin{bmatrix} -2\\3 \end{bmatrix}$ $\begin{bmatrix} -2\\2 \end{bmatrix}$ $\begin{bmatrix} -2\\2 \end{bmatrix}$ $\begin{bmatrix} -58\\87\\14 \end{bmatrix}$ $\begin{bmatrix} 42\\-38\\-12 \end{bmatrix}$

9)