Math 3F Homework 1 (Fall 2017) Instructions: Please select the best solution among the options presented. Once you have made your selection for ALL problems below, enter your answers into the corresponding Moodle quiz no later than 9:30AM Thursday, August 31st. Good luck!

The Fitzhugh-Nagumo model for the electrical impulse in a neuron states that, in the absence of relaxation effects, the electrical potential in a neuron $v(t)$ obeys the differential equation

$$\frac{dv}{dt} = -v \left[v^2 - (1 + a)v + a \right]$$

where a is a positive constant such that $0 < a < 1$.

Problem 1: What are the **equilibrium** solutions? Remember that equilibrium solutions correspond to solutions of the form $v(t) = \text{constant}$.

A All values in the interval $[-a, a]$.

B Just $v = 0$.

C There are no such solutions.

D $v = 1, \, v = a$.

E $v = 0, \, 1, \, a$.

Problem 2: Using the fact that this differential equation is separable, choose among the list below the implicit relationship between v and time t when v is not an equilibrium solution. Here, C is a constant and we have selected $a = \frac{1}{2}$.

A $\frac{v}{(1-2v)^2} = Ce^{-t}$.

B $\frac{v^2(1-v)^2}{(1-2v)^2} = Ce^{-t}$.

C $\frac{v(1-v^2)}{(1-2v)^2} = Ce^{-t}$.

D $\frac{v^2(1-v^2)}{(1-2v)^2} = Ce^{-2t}$.

Problem 3: Suppose that $v(0) = 2$. Use the quadratic formula to find $v(t)$ as an explicit function of time. Choose from among the list below the best possible answer.

A $v(t) = 2e^{-t}$.

B $v(t) = \frac{1 - \frac{\sqrt{5}}{2} e^{-t/2} - \sqrt{1 - \frac{\sqrt{5}}{2} e^{-t/2}}}{2(1 - \frac{\sqrt{5}}{2} e^{-t/2})}$.

$C \ v(t) = 1 + e^{-t/2}.$

$D \ v(t) = \frac{1 - \frac{g}{2} e^{-t/2} + \sqrt{1 - \frac{g}{2} e^{-t/2}}}{(1 - \frac{g}{2} e^{-t/2})}.$

According to Newton’s Law of Universal Gravitation, the gravitational force on an object of mass m that has been projected vertically upward from the earth’s surface is

$$F = \frac{mgR^2}{(x + R)^2}$$

where $x(t)$ is the object’s distance above the surface at time t, R is the earth’s radius, and g is the acceleration due to gravity. Also, by Newton’s Second Law, $F = ma = m \frac{dv}{dt}$ and so

$$\frac{dv}{dt} = -\frac{gR^2}{(x + R)^2}$$

Suppose a rocket is fired vertically upward with an initial velocity v_0.

Problem 4: Using the Calculus II fact that

$$\frac{dv}{dx} = \frac{dv}{dt} \frac{dt}{dx},$$

choose the expression from the list below that best represents $\frac{dv}{dx}$.

- A $\frac{dv}{dx} = -\frac{v}{x}$
- B $\frac{dv}{dx} = -\frac{gR^2}{v(x + R)^2}$
- C $\frac{dv}{dx} = -\frac{2gR^2}{v^2(x + R)^2}$
- D $\frac{dv}{dx} = -\frac{g^2v}{(x + R)^2}$

Problem 5: The result of problem 1 is a separable differential equation for the speed of the projectile as a function of height about the surface of the Earth. Solve this differential equation using the initial condition $v(x = 0) = v_0$ and select the most appropriate solution from the list of functions below:
A \[v(x) = \sqrt{\frac{2gR^2}{x+R} - 2gR + v_0^2} \]

B \[v(x) = \sqrt{\frac{2gR^2}{x+R} + 2gR} \]

C \[v(x) = \sqrt{\frac{2gR^2}{x+R} + gR - \frac{1}{2}v_0^2} \]

D \[v(x) = -\sqrt{\frac{2gR^2}{x+R} - 2gR + v_0^2} \]

Problem 6: The escape velocity is the choice of \(v_0 \) so that \(v(\infty) = 0 \). Compute the escape velocity and select the answer from the list below

A \(v_0 = \sqrt{gR^2} \)

B \(v_0 = \sqrt{2gR} \)

C \(v_0 = gR \)

D \(v_0 = \sqrt{4gR} \)

Consider the chemical reaction whereby two reactant molecules \(A \) and \(B \) form the molecule \(C \). According to the law of mass action, the differential equation for \(x(t) = [C] \) (the concentration of \(C \)) is

\[
\frac{dx}{dt} = k_f(a - x)(b - x) - k_r x
\]

where \(k_f \) is the rate constant for the forward reaction and \(k_r \) is the rate constant for the reverse reaction. Both rate constants are positive. Here, the initial concentrations of \(A \) and \(B \) are \(a \) and \(b \) respectively and \(x(0) = 0 \). For simplicity, let’s assume that \(b = a = 1 \) and \(k_f = 1, k_r = 2 \).

Problem 7: What are the equilibrium solutions?

A Just \(2 + \sqrt{3} \).

B There are no such solutions.

C \(x = 0, 2 \).

D \(x = 2 \pm \sqrt{3} \).

Problem 8: Find the solution to this equation with \(x(0) = 0 \).

A \(x(t) = 2 - \frac{1}{t+1} \).

B \(x(t) = 2 - \frac{1}{t+\frac{1}{2}} \).
C \[x(t) = \frac{e^{2 \sqrt{3} t} - 1}{(2 + \sqrt{3})e^{\sqrt{3} t} + \sqrt{3} - 2}. \]

D \[x(t) = \frac{e^{2 \sqrt{3} t} - 1}{(2 - \sqrt{3})e^{\sqrt{3} t} - \sqrt{3} - 2}. \]

Problem 9: Find the solution of \(y'(x) = xe^y \) that satisfies \(y(0) = 0 \).

A \[y(x) = -\ln(1 - \frac{1}{2} x^2). \]

B \[y(x) = \sin(1 - \frac{1}{2} x^2). \]

C \[y(x) = \ln(x^2 - 1). \]

D \[y(x) = \ln(x^2 + 1). \]

Problem 10: Find the solution of \(x \ln x = (1 + y^2)^{-1} y' \) that satisfies \(y(0) = 0 \) for \(x \geq 0 \).

A \[y(x) = \cot \left(\frac{x^2}{4} (2 \ln(x) - 1) \right). \]

B \[y(x) = \exp \left(\frac{x^2}{4} (2 \ln(x) - 1) \right). \]

C \[y(x) = \tan \left(\frac{x^2}{4} (2 \ln(x) - 1) \right). \]

D \[y(x) = \tan^{-1}(x). \]